221 resultados para SULFATED ZIRCONIA
Resumo:
Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Planar waveguides have been prepared on the ZrO2-(3-glycidiloxypropyl)trimethoxysilane (GPTS) system. Stable sols containing ZrO2 nanoparticles have been prepared and characterized by Photon Correlation Spectroscopy. The nanosized sol was embedded in (3-glycidoxipropyl)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The opticalparameters of the waveguides such as refractive index, thickness and propagating modes and attenuation coefficient were measured at 632.8. 543.5 and 1550 nm by the prism coupling technique as a function of the Zr02 content. The planar waveguides present thickness of a few microns and support well confined propagating modes. Er doped samples display weak and broad (δλ≈96nm) emission at 1.5 μm.
Resumo:
Heavy metal oxide (HMO) glasses have received special attention due to their optical, electrical and magnetic properties. The problem with these glasses is their corrosive nature. In this work, three ceramic crucibles (Al 2O 3, SnO 2 and ZrO 2) were tested in the melting of the system 40 PbO-35 BiO 1.5-25 GaO 1.5 (cation-%). After glass melting, crucibles were transversally cut and analyzed by scanning electronic microscopy (SEM), coupled to microanalysis by energy dispersive spectroscopy (EDS). Results indicated that zirconia crucibles presented the highest corrosion, probably due to its smallest grain size. Tin oxide crucibles presented a low corrosion with small penetration of the glass into the crucible. This way, these crucibles are an interesting alternative to melt corrosive glasses in instead of gold or platinum crucibles. It is important to emphasize the lower cost of tin oxide crucibles, compared to gold or platinum ones.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
This paper investigates corrosion behavior in graphite refractory hot metal impregnated with ZrO 2 and CeO 2 carrying solutions used in Blast Furnace hearth, consisting of 50% graphite and 50% anthracite. Corrosions tests were carried out by means of finger test method in an induction furnace, using bar-shaped 30×30×280 mm test specimens and hot metal from CSN#2 Blast Furnace runner. The temperature chosen for this test was 1520°C and sixty-minute isotherm. Upon test completion, test specimens were characterized by their dimensional variation, X-ray diffractometry and Scanning Electronic Microscopy (SEM).
Resumo:
Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.
Resumo:
A detailed study of the microstructural and electrical properties of the yttria-stabilized zirconia/nickel oxide (YSZ/NiO) composite was performed. This material is the precursor to the solid oxide fuel cell anode cermet YSZ/Ni. A liquid mixture technique was developed to produce the YSZ/NiO composite to fabricate high-performance SOFC anodes. This technique resulted in fine and homogeneous powders and specimens with high electrical conductivity. The combined results showed that this technique is suitable for the production of the anode cermet.
Resumo:
This study aimed to evaluate the effect of surface glazing and polishing of yttrium-stabilized tetragonal zirconia polycrystal ceramic on early dental biofilm formation, as well as the effect of brushing on the removal of adhered bacteria. Two subjects used oral appliances with polished and glazed samples fixed to the right and left sides. After 20 minutes, 1 hour, and 6 hours, the subjects manually brushed the samples on the right side. The samples were analyzed using scanning electron microscopy. Granular material was verified on the samples, especially on irregular surfaces. After 1 hour, there was no significant difference between glazed and polished surfaces in terms of bacterial presence. However, glazed surfaces tended to accumulate more biofilm, and brushing did not completely remove the biofilm. Polished surfaces seem to present a lower tendency for biofilm formation. Int J Prosthodont 2007;20:419-422.
Resumo:
This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 oC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.
Resumo:
Aim of the study was to evaluate the biaxial flexural strength of ceramics processed using the Cerec inLab system. The hypothesis was that the flexural strength would be influenced by the type of ceramic. Ten samples (ISO 6872) of each ceramic (N.=50/n.=10) were made using Cerec inLab (software Cerec 3D) (Ø:15 mm, thickness: 1.2 mm). Three silica-based ceramics (Vita Mark II [VM], ProCad [PC] and e-max CAD ECAD]) and two yttria-stabilized tetragonal-zirconia-polycrystalline ceramics (Y-TZP) (e-max ZirCad [ZrCAD] and Vita In-Ceram 2000 YZ Cubes [VYZ]) were tested. The samples were finished with wet silicone carbide papers up to 1200-grit and polished in a polishing machine with diamond paste (3 μm). The samples were then submitted to biaxial flexural strength testing in a universal testing machine (EMIC), 1 mm/min. The data (MPa) were analyzed using the Kruskal-Wallis and Dunn (5%) tests. Scanning electronic microscopy (SEM) was performed on a representative sample from each group. The values (median, mean±sd) obtained for the experimental groups were: VM (101.7, 102.1±13.65 MPa), PC (165.2, 160±34.7 MPa), ECAD (437.2, 416.1±50.1 MPa), ZrCAD (804.2, 800.8±64.47 MPa) and VYZ (792.7, 807±100.7 MPa). The type of ceramic influenced the flexural strength values (P=0.0001). The ceramics ECADa, e-max ZrCADa and VYZa presented similar flexural strength values which were significantly higher than the other groups (PCb and VM IIb), which were similar statistically between them (Dunn's test). The hypothesis was accepted. The polycrystalline ceramics (Y-TZP) should be material chosen for make FPDs because of their higher flexural strength values.
Resumo:
Objective: To evaluate the influence of different air abrasion protocols on the surface roughness of an yttria-stabilized polycrystalline tetragonal zirconia) (Y-TZP) ceramic, as well as the surface topography of the ceramic after the treatment. Method: Fifty-four specimens (7.5×4×7.5mm) obtained from two ceramic blocks (LAVA, 3M ESPE) were flattened with fine-grit sandpaper and subjected to sintering in the ceramic system's specific firing oven. Next, the specimens were embedded in acrylic resin and the surfaces to be treated were polished in a polishing machine using sandpapers of decreasing abrasion (600- to 1,200-grit) followed by felt discs with 10μm and 3μm polishing pastes and colloidal silica. The specimens were then randomly assigned to 9 groups, according to factors particle and pressure(n=6): Gr1- control; Gr2- Al 2O 3(50μm)/2.5 bar; Gr3- Al 2O 3(110μm)/2.5 bar; Gr4- SiO 2(30μm)/2.5 bar; Gr5- SiO 2(30μm)/2.5 bar; Gr6- Al 2O 3(50μm)/3.5 bar; Gr7- Al2O3(110μm)/3.5 bar; Gr8- SiO 2(30μm)/3.5 bar; Gr9- SiO 2(30μm)/3.5 bar. After treatments, surface roughness was analyzed by a digital optical profilometer and the morphology was examined by scanning electron microscopy (SEM). Data (μm) were subjected to statistical analysis by Dunnett's test (5%), two-way ANOVA and Tukey's test (5%). Results: The type of particle (p=0.0001) and the pressure (p=0.0001) used in the air abrasion protocols influenced the surface roughness values among the experimental groups (ANOVA). The mean surface roughness values (μm) obtained for the experimental groups (Gr2 to Gr9) were, respectively: 0.37 D; 0.56 BC; 0.46 BC; 0.48 CD; 0.59 BC; 0.82 A; 0.53B CD; 0.67 AB. The SEM analysis revealed that Al 2O 3, regardless of the particle size and pressure used, caused damage to the surface of the specimens, as it produced superficial damages on the ceramic, in the form of grooves and cracks. Conclusion: Al2O3 (110 μm/3.5 bar) air abrasion promoted the highest surface roughness on the ceramics, but it does not mean that this protocol promotes better ceramic-cement union compared to the other air abrasion protocols.