167 resultados para Rolling element bearings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading. © 2013 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Comunicação - FAAC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution on the pen-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm x 5 mm) were created varying the platform (R, regular or S. switching) and the abutments (S, straight or A, angulated 15 degrees). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (sigma(max)) and minimum (sigma(min)) principal stress values were obtained. For the cortical bone the highest stress values (sigma(max)) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (sigma(max)) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The purpose of this study is to analyze the tension distribution on bone tissue around implants with different angulations (0 degrees, 17 degrees, and 30 degrees) and connections (external hexagon and tapered) through the use of three-dimensional finite element and statistical analyses.Methods: Twelve different configurations of three-dimensional finite element models, including three inclinations of the implants (0 degrees, 17 degrees, and 30 degrees), two connections (an external hexagon and a tapered), and two load applications (axial and oblique), were simulated. The maximum principal stress values for cortical bone were measured at the mesial, distal, buccal, and lingual regions around the implant for each analyzed situation, totaling 48 groups. Loads of 200 and 100 N were applied at the occlusal surface in the axial and oblique directions, respectively. Maximum principal stress values were measured at the bone crest and statistically analyzed using analysis of variance. Stress patterns in the bone tissue around the implant were analyzed qualitatively.Results: The results demonstrated that under the oblique loading process, the external hexagon connection showed significantly higher stress concentrations in the bone tissue (P < 0.05) compared with the tapered connection. Moreover, the buccal and mesial regions of the cortical bone concentrated significantly higher stress (P < 0.005) to the external hexagon implant type. Under the oblique loading direction, the increased external hexagon implant angulation induced a significantly higher stress concentration (P = 0.045).Conclusions: The study results show that: 1) the oblique load was more damaging to bone tissue, mainly when associated with external hexagon implants; and 2) there was a higher stress concentration on the buccal region in comparison to all other regions under oblique load.