140 resultados para PHYLOGENETIC INFERENCE
Resumo:
Crotoxin is a neurotoxin from Crotalus durissus terrificus venom that shows immunomodulatory, anti-inflammatory, antimicrobial, antitumor and analgesic activities. Structurally, this toxin is a heterodimeric complex composed by a toxic basic PLA2 (Crotoxin B or CB) non-covalently linked to an atoxic non-enzymatic and acidic component (Crotapotin, Crotoxin A or CA). Several CA and CB isoforms have been isolated and characterized, showing that the crotoxin venom fraction is, in fact, a mixture of different molecules derived from the combination of distinct subunit isoforms. Intercro (IC) is a protein from the same snake venom which presents high similarity in primary structure to CB, indicating that it could be an another isoform of this toxin. In this work, we compare IC to the crotoxin complex (CA/CB) and/or CB in order to understand its functional aspects. The experiments with IC revealed that it is a new toxin with different biological activities from CB, keeping its catalytic activity but presenting low myotoxicity and absence of neurotoxic activity. The results also indicated that IC is structurally similar to CB isoforms, but probably it is not able to form a neurotoxic active complex with crotoxin A as observed for CB. Moreover, structural and phylogenetic data suggest that IC is a new toxin with possible toxic effects not related to the typical CB neurotoxin. © 2013.
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of the study was to estimate heritability for calving interval (CI) and age at first calving (AFC) and also calculate repeatability for CI in buffaloes using Bayesian inference. The Brazilian Buffaloes Genetic Improvement Program provided the database. Data consists on information from 628 females and four different herds, born between 1980 and 2003. In order to estimate the variance, univariate analyses were performed employing Gibbs sampler procedure included in the MTGSAM software. The model for CI included the random effects direct additive and permanent environment factors, and the fixed effects of contemporary groups and calving orders. The model for AFC included the direct additive random effect and contemporary groups as a fixed effect. The convergence diagnosis was obtained using Geweke that was implemented through the Bayesian Output Analysis package in R software. The estimated averages were 433.2 days and 36.7months for CI and AFC, respectively. The means, medians and modes for the calculated heritability coefficients were similar. The heritability coefficients were 0.10 and 0.42 for CI and AFC respectively, with a posteriori marginal density that follows a normal distribution for both traits. The repeatability for CI was 0.13. The low heritability estimated for CI indicates that the variation in this trait is, to a large extent, influenced by environmental factors such as herd management policies. The age at first calving has clear potential for yield improvement through direct selection in these animals.
Resumo:
The aim of this study was to estimate genetic, environmental and phenotypic correlation between birth weight (BW) and weight at 205 days age (W205), BW and weight at 365 days age (W365) and W205-W365, using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data that included 3,883 observations from Mediterranean breed buffaloes. With the purpose to estimate variance and covariance, bivariate analyses were performed using Gibbs sampler that is included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, maternal environmental random effect and contemporary group as fixed effect. The convergence diagnosis was achieved using Geweke, a method that uses an algorithm implemented in R software through the package Bayesian Output Analysis. The calculated direct genetic correlations were 0.34 (BW-W205), 0.25 (BW-W365) and 0.74 (W205-W365). The environmental correlations were 0.12, 0.11 and 0.72 between BW-W205, BW-W365 and W205-W365, respectively. The phenotypic correlations were low for BW-W205 (0.01) and BW-W365 (0.04), differently than the obtained for W205-W365 with a value of 0.67. The results indicate that BW trait have low genetic, environmental and phenotypic association with the two others traits. The genetic correlation between W205 and W365 was high and suggests that the selection for weight at around 205 days could be beneficial to accelerate the genetic gain.
Resumo:
Quantitative analysis of growth genetic parameters is not available for many breeds of buffaloes making selection and breeding decisions an empirical process that lacks robustness. The objective of this study was to estimate heritability for birth weight (BW), weight at 205 days (W205) and 365 days (W365) of age using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data. For the traits BW, W205 and W365 of Brazilian Mediterranean buffaloes 5169, 3792 and 3883 observations have been employed for the analysis, respectively. In order to obtain the estimates of variance, univariate analyses were conducted using the Gibbs sampler included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, random maternal permanent environmental effect and contemporary group that was treated as a fixed effect. The convergence diagnosis was performed employing Geweke, a method that uses an algorithm from the Bayesian Output Analysis package that was implemented using R software environment. The average values for weight traits were 37.6 +/- 4.7 kg for BW, 192.7 +/- 40.3 kg for W205 and 298.6 +/- 67.4 kg for W365. The heritability posterior distributions for direct and maternal effects were symmetric and close to those expected in a normal distribution. Direct heritability estimates obtained using the modes were 0.30 (BW), 0.52 (W205) and 0.54 (W365). The maternal heritability coefficient estimates were 0.31, 0.19 and 0.21 for BW, W205 and W365, respectively. Our data suggests that all growth traits and mainly W205 and W365, have clear potential for yield improvement through direct genetic selection.
Resumo:
The objective of the study was to estimate heritability and repeatability for milk yield (MY) and lactation length (LL) in buffaloes using Bayesian inference. The Brazilian genetic improvement program of buffalo provided the data that included 628 females, from four herds, born between 1980 and 2003. In order to obtain the estimates of variance, univariate analyses were performed with the Gibbs sampler, using the MTGSAM software. The model for MY and LL included direct genetic additive and permanent environment as random effects, and contemporary groups, milking frequency and calving number as fixed effects. The convergence diagnosis was performed with the Geweke method using an algorithm implemented in R software through the package Bayesian Output Analysis. Average for milk yield and lactation length was 1,546.1 +/- 483.8 kg and 252.3 +/- 42.5 days, respectively. The heritability coefficients were 0.31 (mode), 0.35 (mean) and 0.34 (median) for MY and 0.11 (mode), 0.10 (mean) and 0.10 (median) for LL. The repeatability coefficient (mode) were 0.50 and 0.15 for MY and LL, respectively. Milk yield is the only trait with clear potential for genetic improvement by direct genetic selection. The repeatability for MY indicates that selection based on the first lactation could contribute for an improvement in this trait.
Resumo:
In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A phylogenetic analysis based on nuclear ITS and plastid trnK intron sequences confirms that Dahlgrenodendron, Sinopora, Triadodaphne, and Yasunia are members of the Cryptocarya group, as expected from morphology. Dahlgrenodendron from South Africa is sister to Aspidostemon from Madagascar. Triadodaphne inaequitepala is nested within Endiandra (both from Australasia), and Yasunia from South America is nested among South American Beilschmiedia species. Sinopora is a member of the Beilschmiedia clade, but its precise position is still uncertain. Among large genera of the group, Cryptocarya is clearly monophyletic, and Endiandra appears to be as well, if T. inaequitepala is included. Beilschmiedia is paraphyletic with respect to (at least) Potameia and Yasunia. Most well-supported clades within genera are geographically homogeneous, except a clade including the Chilean Cryptocarya alba and two New Caledonian species. Both Beilschmiedia and Cryptocarya have reached the Americas more than once. Four-locular anthers are plesiomorphic in the Cryptocarya group; two-locular anthers have arisen by fusion of the two pollen sacs of a theca. In the plesiomorphic fruit type, the ovary is completely enclosed in receptacular tissue; a superior fruit, seated free on its pedicel, is a synapomorphy of the Beilschmiedia clade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)