178 resultados para Morse oscillator
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work it is analyzed a one-dimensional lattice which is composed by mass-spring systems with one additional Rosen-Morse potential on site. This kind of lattice is used to study thermodynamic properties of DNA, especially its thermal denaturation. on the context of this work, the Rosen-Morse potential simulates hydrogen bonds between double strands of the molecule. From the graphic of the average stretching of base pairs versus temperature it is possible to observe the thermal denaturation of the system. This result shows that it is possible to obtain phase transition with an asymmetric potential without an infinite barrier.
Resumo:
Three dimensional exactly solvable quantum potentials for which an extra term of form 1/r(2) has been added are shown to maintain their functional form which allows the construction of the Hamiltonian hierarchy and the determination of the spectra of eigenvalues and eigenfunctions within the Supersymmetric Quantum Mechanics formalism. For the specific cases of the harmonic oscillator and the Coulomb potentials, known as pseudo-harmonic oscillator and pseudo-Coulomb potentials, it is shown here that the inclusion of the new term corresponds to rescaling the angular momentum and it is responsible for maintaining their exact solvability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work studies through the Floquet theory the stability of breathers generated by the anti-continuous limit. We used the Peyrard-Bishop model for DNA and two kinds of nonlinear potential: the Morse potential and a potential with a hump. The comparison of their stability was done in function of the coupling parameter. We also investigate the dynamic behaviour of the system in stable and unstable regions. Qualitatively, the dynamic of mobile breathers resembles DNA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this in vitro study was to quantify strain development during axial and nonaxial loading using strain gauge analysis for three-element implant-supported FPDs, varying the arrangement of implants: straight line (L) and offset (O). Materials and Methods: Three Morse taper implants arranged in a straight line and three implants arranged in an offset configuration were inserted into two polyurethane blocks. Microunit abutments were screwed onto the implants, applying a 20 Ncm torque. Plastic copings were screwed onto the abutments, which received standard wax patterns cast in Co-Cr alloy (n = 10). Four strain gauges were bonded onto the surface of each block tangential to the implants. The occlusal screws of the superstructure were tightened onto microunit abutments using 10 Ncm and then axial and nonaxial loading of 30 Kg was applied for 10 seconds on the center of each implant and at 1 and 2 mm from the implants, totaling nine load application points. The microdeformations determined at the nine points were recorded by four strain gauges, and the same procedure was performed for all of the frameworks. Three loadings were made per load application point. The magnitude of microstrain on each strain gauge was recorded in units of microstrain (mu). The data were analyzed statistically by two-way ANOVA and Tukey's test (p < 0.05). Results: The configuration factor was statistically significant (p= 0.0004), but the load factor (p= 0.2420) and the interaction between the two factors were not significant (p= 0.5494). Tukey's test revealed differences between axial offset (mu) (183.2 +/- 93.64) and axial straight line (285.3 +/- 61.04) and differences between nonaxial 1 mm offset (201.0 +/- 50.24) and nonaxial 1 mm straight line (315.8 +/- 59.28). Conclusion: There was evidence that offset placement is capable of reducing the strain around an implant. In addition, the type of loading, axial force or nonaxial, did not have an influence until 2 mm.
Resumo:
Employing a time dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.
Resumo:
An algebraic reformulation of the Bohr-Sommerfeld (BS) quantization rule is suggested and applied to the study of bound states in one-dimensional quantum wells. The energies obtained with the present quantization rule are compared to those obtained with the usual BS and WKB quantization rules and with the exact solution of the Schrodinger equation. We find that, in diverse cases of physical interest in molecular physics, the present quantization rule not only yields a good approximation to the exact solution of the Schrodinger equation, but yields more precise energies than those obtained with the usual BS and/or WKB quantization rules. Among the examples considered numerically are the Poeschl-Teller potential and several anharmonic oscillator potentials. which simulate molecular vibrational spectra and the problem of an isolated quantum well structure subject to an external electric field.
Resumo:
We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The recently introduced dressed coordinates are studied in the path-integral approach. These coordinates are defined in the context of a harmonic oscillator linearly coupled to massless scalar field and it is shown that in this model the dressed coordinates appear as a coordinate transformation preserving the path-integral functional measure. The analysis also generalizes the sum rules established in a previous work. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In previous publications, the concepts of dressed coordinates and dressed states have been introduced in the context of a harmonic oscillator linearly coupled to an infinity set of other harmonic oscillators. In this paper, we show how to generalize such dressed coordinates and. states to a nonlinear version of the mentioned system. Also, we clarify some misunderstandings about the concept of dressed coordinates. Indeed, now we: prefer to call them renormalized coordinates to emphasize the analogy with the renormalized fields in quantum field theory.
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.