205 resultados para LEACHING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the management of the coffee crop is well established in Brazil, there is still room for its improvement in relation natural resources available in each region, aiming the increase in productivity. Here are presented results regarding the fate of the fertilizer nitrogen (N) applied to a coffee plantation related to the prevailing soil water conditions. Soil water balances are discussed, which allowed evaluation of the root distribution, determinations of the crop coefficient and of the soil water conditions during the development of the crop. Approximately, 60% of the root system was distributed in the 0-0.3 m soil layer and the average crop coefficient was 1.1 for 3 to 5 year old plants. Using an N label, the 15N, it was possible to study the distribution of N in the plant and in the soil and establishes general N balances, which also include losses like leaching and volatilization. After two years of ammonium sulfate application, at rates of 280 (1st year) and 350 (2nd year) kg.ha-1 of N, in four equal application performed during the period of positive growth rate, the recuperation of fertilizer N were 19.1% by the aerial plant part and 9.4% by the roots, 12.6% remained in the soil and 11.2% in the litter; 0.9% was lost by volatilization and 2.3% by leaching; 26.3% was exported through harvesting and 18.2% remained in non evaluated compartments. From the applied 630 kg.ha -1 of N during the two years, 180 kg.ha -1 of N were found in the plant (shoot and root), which corresponds to 28.6%; 150 kg.ha -1 of N remained available for the next years(soil and litter), and only 20 kg.ha -1 of N were effectively lost (volatilization and leaching).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that the dissolution of chalcopyrite (CuFeS2) in acid medium can be accelerated by the addition of Cl- ions, which modify the electrochemical reactions in the leaching system. Electrochemical noise analysis (ENA) was utilized to evaluate the effect of the Cl- ions and Acidithiobacillus ferrooxidans on the oxidative dissolution of a CPE-chalcopyrite (carbon paste electrode modified with chalcopyrite) in acid medium. The emphasis was on the analysis of the admittance plots (Ac) calculated by ENA. In general, a stable passive behavior was observed, mainly during the initial stages of CPE-chalcopyrite immersion, characterized by a low passive current and a low dispersion of the Ac plots, mainly after bacteria addition. This can be explained by the adhesion of bacterial cells on the CPE-chalcopyrite surface acting as a physical barrier. The greater dispersions in the Ac plots occurred immediately after the Cl- ions addition, in the absence of bacteria characterizing an active-state. In the presence of bacteria the addition of Clions only produced some effect after some time due to the barrier effect caused by bacteria adhesion. © (2009) Trans Tech Publications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate methodologies for the potassium leaching test and to verify its sensitivity for identifying different levels of vigor of arugula seed lots. Five seed lots each of Rucula Cultivada and Rucula Gigante were used. Standard germination, first count of germination, seedling emergence and variations of the potassium leaching test (50 or 100 seeds imbibed in 50 mL or 75 mL in water; at 25 °C and 30 °C; for 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3, 4 and 5 hours) were done. It was observed that the period seeds need to be soaked can be reduced to 2 hours and the water volume can be reduced to 50 mL. The utilization of 50 seeds showed a smaller variation coefficient and the best temperature was 30 °C. It can be concluded that the potassium leaching test for arugula seeds can be run using 50 seeds in 50 mL of water for 2 hours at 30 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil flushing is an alternative remediation technology for soils contaminated with heavy metals, which the main contaminant removing process consists in percolating an extraction solution. This work aimed to use the response surface methodology to point out combinations among the parameters of the extraction solution (Na2EDTA concentration, volume e pH) in order to reduce the concentration of copper in a sandy soil to risk levels lower than the intervention levels for exposure scenarios adopted by the Environmental Company of Sao Paulo State. Thus, a series of tests in leaching columns were carried out using a Fluvisol artificially contaminated (1257,3 mg kg-1). The tests were conducted in triplicate and setup a central composite rotatable design with 15 different parameters combinations of the extraction solution and one replicate in the center point. Using 5% significance level, the adjusted model (R2 = 0,98) indicated combinations of Na2EDTA concentration, pH and volume of the extraction solution which allow reduction of copper concentration below levels reported by environmental agency of Sao Paulo State for industrial, residential, agricultural or maximum exposure scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urease inhibitor (UI) and nitrification inhibitor (NI) have the potential to improve N-use efficiency of applied urea and minimize N losses via gaseous emissions of ammonia (NH 3) to the atmosphere and nitrate (NO3-) leaching into surface and ground water bodies. There is a growing interest in the formulations of coating chemical fertilizers with both UI and NI. However, limited information is available on the combined use of UI and NI applied with urea fertilizer. Therefore the aim of this study was to investigate the effects of treating urea with both UI and NI to minimize NH 3 volatilization. Two experiments were set up in volatilization chambers under controlled conditions to examine this process. In the first experiment, UR was treated with the urease inhibitor NBPT [N-(n-butyl) thiophosphoric acid triamide] at a rate of 1060 mg kg -1 urea and/or with the nitrification inhibitor DCD (dicyandiamide) at rates equivalent to 5 or 10% of the urea N. A randomized experimental design with five treatments and five replicates was used: 1) UR, 2) UR + NBPT, 3) UR + DCD 10%, 4) UR + NBPT + DCD 5%, and 5) UR + NBPT + DCD 10%. The fertilizer treatments were applied to the surface of an acidic Red Latosol soil moistened to 60% of the maximum water retention and placed inside volatilization chambers. Controls chambers were added to allow for NH 3 volatilized from unfertilized soil or contained in the air that swept over the soil surface. The second experiment had an additional treatment with surface-applied DCD. The chambers were glass vessels (1.5 L) fit with air inlet and outlet tubings to allow air to pass over the soil. Ammonia volatilized was swept and carried to a flask containing a boric acid solution to trap the gas and then measured daily by titration with a standardized H 2SO 4 solution. Continuous measurements were recorded for 19 and 23 days for the first and second experiment, respectively. The soil samples were then analyzed for UR-, NH4+-, and NO3--N. Losses of NH 3 by volatilization with unamended UR ranged from 28 to 37% of the applied N, with peak of losses observed the third day after fertilization. NBPT delayed the peak of NH 3 losses due to urease inhibition and reduced NH 3 volatilization between 54 and 78% when compared with untreated UR. Up to 10 days after the fertilizer application, NH 3 losses had not been affected by DCD in the UR or the UR + NBPT treatments; thereafter, NH 3 volatilization tended to decrease, but not when DCD was present. As a consequence, the addition of DCD caused a 5-16% increase in NH 3 volatilization losses of the fertilizer N applied as UR from both the UR and the UR + NBPT treatments. Because the effectiveness of NBPT to inhibit soil urease activity was strong only in the first week, it could be concluded that DCD did not affect the action of NBPT but rather, enhanced volatilization losses by maintaining higher soil NH4+ concentration and pH for a longer time. Depending on the combination of factors influencing NH 3 volatilization, DCD could even offset the beneficial effect of NBPT in reducing NH 3 volatilization losses. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7. 6 × 10-6 and 1. 2 × 10-3 g cm-3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10-16 mol m-2 s-1 that is within the range of 4 × 10-16-3 × 10-14 mol m-2 s-1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water-rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1. 5 %) and Serra Geral (98. 5 %) aquifers. © 2012 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sewage sludge may be used as an agricultural fertilizer, but the practice has been criticized because sludge may contain trace elements and pathogens. The aim of this study was to compare the effectiveness of total and pseudototal extractants of Cu, Fe, Mn, and Zn, and to compare the results with the bioavailable concentrations of these elements to maize and sugarcane in a soil that was amended with sewage sludge for 13 consecutive years and in a separate soil that was amended a single time with sewage sludge and composted sewage sludge. The 13-year amendment experiment involved 3 rates of sludge (5, 10, and 20 t ha-1). The one-time amendment experiment involved treatments reflecting 50, 100, and 200 % of values stipulated by current legislation. The metal concentrations extracted by aqua regia (AR) were more similar to those obtained by Environmental Protection Agency (EPA) 3052 than to those obtained by EPA3051, and the strongest correlation was observed between pseudo(total) concentrations extracted by AR and EPA3052 and bioavailable concentrations obtained by Mehlich III. An effect of sewage sludge amendment on the concentrations of heavy metals was only observed in samples from the 13-year experiment. © 2012 Springer Science+Business Media B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)