143 resultados para Hadronic Colliders
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.
Resumo:
Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.
Resumo:
We study proton - anti-proton cross sections in the framework of an updated minijet eikonal model. We propose a different scheme for fixing the parameters, in which we make use of the measured minijet cross section. We compare the results obtained with the GRV98, MRST98, CTEQ6-L and KLN gluon distributions. The latter includes gluon saturation effects. We conclude that in the very high energy regime the use of the KLN distribution improves significantly the behavior of the cross sections. However this improvement is due to the shape of the KLN gluon density and has little to do with saturation effects.
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q 2 is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribution function exhibits the power law xg(x, Q 2) = h(Q 2)x( -∈). Assuming that the Q 2 scale is proportional to the dynamical gluon mass one, we show that the values of h(Q 2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales. © 2008 World Scientific Publishing Company.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
Recent progress in the solution of Schwinger-Dyson equations (SDE), as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared (IR) finite. We discuss how this non-perturbative information can be introduced into the QCD perturbative expansion in a consistent scheme, showing some examples of tree level hadronic reactions that successfully fit the experimental data with the gluon propagator and coupling constant depending on a dynamically generated gluon mass. This infrared mass scale acts as a natural cutoff and eliminates some of the ad hoc parameters usually found in perturbative QCD calculations. The application of these IR finite Green's functions in the case of higher order terms of the perturbative expansion is commented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within 2 ns. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
We present a measurement of the average value of a new observable at hadron colliders that is sensitive to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton distribution functions. The observable measures the angular correlations of jets and is defined as the number of neighboring jets above a given transverse momentum threshold which accompany a given jet within a given distance δR in the plane of rapidity and azimuthal angle. The ensemble average over all jets in an inclusive jet sample is measured and the results are presented as a function of transverse momentum of the inclusive jets, in different regions of δR and for different transverse momentum requirements for the neighboring jets. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb -1 collected with the D0 detector at the Fermilab Tevatron Collider in pp- collisions at s=1.96 TeV. The results are well described by a perturbative QCD calculation in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects. From these results, we extract the strong coupling and test the QCD predictions for its running over a range of momentum transfers of 50-400 GeV. © 2012 Elsevier B.V.
Resumo:
A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy s=7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 fb-1. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this Letter. © 2012 CERN.
Resumo:
Many models of new physics, including versions of supersymmetry (SUSY), predict production of events with low missing transverse energy, electroweak gauge bosons, and many energetic final-state particles. The stealth SUSY model yields this signature while conserving R-parity by means of a new hidden sector in which SUSY is approximately conserved. The results of a general search for new physics, with no requirement on missing transverse energy, in events with two photons and four or more hadronic jets are reported. The study is based on a sample of proton-proton collisions at s=7TeV corresponding to 4.96fb-1 of integrated luminosity collected with the CMS detector in 2011. Based on good agreement between the data and the standard model expectation, the data are used to determine model-independent cross-section limits and a limit on the squark mass in the framework of stealth SUSY. With this first study of its kind, squark masses less than 1430 GeV are excluded at the 95% confidence level. © 2012 CERN.
Resumo:
In this paper, a search for supersymmetry (SUSY) is presented in events with two opposite-sign isolated leptons in the final state, accompanied by hadronic jets and missing transverse energy. An artificial neural network is employed to discriminate possible SUSY signals from a standard model background. The analysis uses a data sample collected with the CMS detector during the 2011 LHC run, corresponding to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at the center-of-mass energy of 7 TeV. Compared to other CMS analyses, this one uses relaxed criteria on missing transverse energy (EÌ̧T>40 GeV) and total hadronic transverse energy (HT>120 GeV), thus probing different regions of parameter space. Agreement is found between standard model expectation and observations, yielding limits in the context of the constrained minimal supersymmetric standard model and on a set of simplified models. © 2013 CERN.
Resumo:
A search for supersymmetry is presented based on events with large missing transverse energy, no isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet. A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity. The sample, corresponding to an integrated luminosity of 19.4fb-1, consists of proton-proton collision data recorded at a center-of-mass energy of 8TeV with the CMS detector at the LHC in 2012. The observed numbers of events are found to be consistent with the standard model expectation, which is evaluated with control samples in data. The results are interpreted in the context of two simplified supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino to an undetected lightest supersymmetric particle and either a bottom or top quark-antiquark pair, characteristic of gluino mediated bottom- or top-squark production. Using the production cross section calculated to next-to-leading-order plus next-to-leading-logarithm accuracy, and in the limit of a massless lightest supersymmetric particle, we exclude gluinos with masses below 1170GeV and 1020GeV for the two scenarios, respectively. © 2013 CERN.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)