232 resultados para Determination of aluminium in water
Resumo:
A new methodology for soluble oxalic acid determination in grass samples was developed using a two enzyme reactor in an FIA system. The reactor consisted of 3 U of oxalate oxidase and 100 U of peroxidase immobilized on Sorghum vulgare seeds activated with glutaraldehyde. The carbon dioxide was monitored spectrophotometrically, after reacting with an acid-base indicator (Bromocresol Purple) after it permeated through a PTFE membrane. A linear response range was observed between 0.25 and 1.00mmol l-1 of oxalic acid; the data was fit by the equation A=-0.8(±1.5)+ 57.2(±2.5)[oxalate], with a correlation coefficient of 0.9971 and a relative standard deviation of 2% for n=5. The variance for a 0.25 mmol l-1 oxalic acid standard solution was lower than 4% for 11 measurements. The FIA system allows analysis of 20 samples per hour without prior treatment. The proposed method showed a good correlation with that of the Sigma Kit.
Resumo:
A rapid and economical method is described for the determination of deltamethrin in wheat, rice, peanuts and corn. It is based on simultaneous extraction and clean-up on a column packed with alumina and silica gel using n-hexane-ethyl ether (8:2, v/v), followed by a derivatization step and gas-chromatographic analysis. Recoveries from fortified cereal and peanut samples were determined at four concentration levels and ranged from 73 to 109%. The detection limits were 0.01 to 0.03 mg/ kg. This method simplifies the traditional procedures in terms of sample size, solvent consumption and analysis time. © Springer-Verlag 1998.
Resumo:
The aim of this work is to propose a flow spectrophotometric procedure for manganese determination in steel based on electrochemical oxidation of Mn(II) to Mn(VII) at a Pt electrode surface by means of the catalytic effect of Ag(I). The on-line oxidation step was obtained by injecting sample and electrolyte solution directly into an electrolytic cell. After electrolysis, the injectate was homogenized by bubbling air. The permanganate ions produced were passed through the spectrophotometer where absorbance was monitored at 545 nm. Effects of direct current, silver concentration, timing, flow rates, concentration and composition of support electrolyte were investigated. Direct current and silver content manifested themselves as the most relevant parameters. For determination of manganese in the 5.00 - 150 mg L -1 range (r=0,9998) and 60 s electrolysis time, the sample throughput was 20 h -1. Accuracy was assessed by analyzing ten steel standard reference materials. Results are precise (R.S.D. <3%) and in agreement with certified values of reference materials and with standard methods at 95% confidence level.
Resumo:
A flow-injection system with a Chelite-S® cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl2, in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury, to the flow cell in the forward direction or removes the residue from reactor/gas liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h-1 (50.0 500 ng l-1), consuming about 10 ml sample and 5 mg SnCl2 per determination. The detection limit is 0.8 ng l-1 and the relative standard deviation (RSD) (n = 12) of a 76.7 ng l-1 sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found. (C) 2000 Elsevier Science B.V.
Resumo:
The microbiological bioassay, the UV-spectrophotometry and the high performance liquid chromatography (HPLC) methods for assaying sparfloxacin in tablets were compared. The accuracy, repeatability, and precision of each method was assessed and precise. All methods were reliable within acceptable limits for antibiotic pharmaceutical preparations being accurate and precise. The microbiological bioassay and HPLC are more specific than UV-spectrophotometric analysis. However, the microbiological bioassay requires 20 h to get results, and HPLC is the most expensive analysis. The application of each method as a routine analysis should be investigated considering cost, simplicity, equipment, solvents, speed, and application to large or small workloads.
Resumo:
A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8), reaction with Malachite green (MG) and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100%) enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC). The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 μL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2) in agreement with those obtained by an alternative procedure.
Resumo:
A flow-injection system with a glassy carbon disk electrode modified with Prussian Blue film is proposed for the determination of persulfate in commercial samples of hair bleaching boosters by amperometry. The detection was obtained by chronoamperometric technique and the sample is injected into the electrochemical cell in a wall jet configuration. Potassium chloride at concentration of 0.1 mol L-1 acted as sample carrier at a flow rate of 4.0 mL min-1 and supporting-electrolyte. For 0.025 V (vs. Ag/AgCl) applied voltage, the proposed system handles ca. 160 samples per hour (1.0 10-4 - 1.0 10-3 mol L-1 of persulfate), consuming about 200 μL sample and 11 mg KCl per determination. Typical linear correlations between electrocatalytic current and persulfate concentration was ca. 0.9998. The detection limit is 9.0 10-5 mol L-1 and the calculated amperometric sensibility 3.6 103 μA L mol -1. Relative standard deviation (n =12) of a 1.0 10-4 mol L-1 sample is about 2.2%. The method was applied to persulfate determination in commercial hair-bleaching samples and results are in agreement with those obtained by titrimetry at 95% confidence level and good recoveries (95 - 112%) of spiked samples were found. © 2003 by MDPI.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.
Resumo:
A simple, sensitive and accurate spectrophotometric method was developed for the assay of gatifloxacin in raw material and tablets. Validation of the method yielded good results concerning range, linearity, precision and accuracy. The absorbance was measured at 287 nm for gatifloxacin tablet solutions. The linearity range was found to be 4.0-14.0 μg/mL for gatifloxacin. It was also found that the excipients in the commercial tablets did not interfere with the method.
Resumo:
Flutamide is a potent antiandrogen used for the treatment of prostatic cancer. A simple, sensitive and accurate high-performance liquid Chromatographic (HPLC) method is presented for quantitative determination of flutamide in tablets, using a reversed-phase technique and UV detection at 240 nm. The isocratic elution was used to quantify the analyte. The samples were chromatographed on Luna-C18 column and the mobile phase was 0.05 M phosphate buffer pH 4.0 - acetonitrile (50:50, v/v). The method was linear between 2.9 - 11.6 mg L -1. Over the tested concentration range the intra-day relative standard deviation for replicate analysis in tablets ranged from 0.44 to 0.78%. It was also found that the excipients in the commercial tablets did not interfere with the method.
Resumo:
The validation of a simple, sensitive and specific agar diffusion bioassay, applying cylinder-plate method, for the determination of the antibiotic azithromycin in ophthalmic solutions is described. Using a strain of Bacillus subtilis ATCC 9372 as the test organism, azithromycin at concentrations ranging from 50.0 to 200.0 μg·mL-1 could be measured in 1.666 7 mg·mL-1 ophthalmic solutions. A prospective validation of the method showed that the method was linear (r = 0.999 9) and precise (RSD = 0.70) and accurate (it measured the added quantities). The results obtained by bioassay method could be statistically calculated by linear parallel model and by means of regression analysis and verified using analysis of variance (ANOVA). We conclude that the microbiological assay is satisfactory for quantification of azithromycin in ophthalmic solutions.
Resumo:
A new, simple, precise, rapid and low-cost spectrophotometric method for methyldopa determination in pharmaceutical preparations is described. This method is based on the complexation reaction of methyldopa with molybdate. Absorbance of the resulting yellow coloured product is measured at 410 nm. Beer's Law is obeyed in a concentration range of 50 - 200 μg ml -1 methyldopa with an excellent correlation coefficient (r = 0.9999). No interference was observed from common excipients in formulations. The results show a simple, accurate, fast and readily applied method to the determination of methyldopa in pharmaceutical products. The analytical results obtained for these products by the proposed method are in agreement with those of the Brazilian Pharmacopoeia procedure at 95% confidence level.
Resumo:
A simple and reproducible method was developed for the assay of lomefloxacin in tablets. The excipients in the commercial tablet preparation did not interfere with the assay. Beer's law is obeyed in the range 2.0-9.0 μg.mL-1 at λmax 280 nm. The molar absorptivity was calculated. Six triplicate analyses of solutions containing six different concentrations of the examined drug were carried out and gave a mean correlation coefficient 0.9997. The proposed method was applied to the determination of the examined drug in coated tablet and the results demonstrated that the method is equally accurate, precise and reproducible as the official methods.