288 resultados para stabilized zirconia
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Processo de Preparação de Zirconia Dopada e não Dopada pela Rota Sol-Gel Usando Nitrato de Zirconila como Material de Partida compreendendo as etapas de preparação de uma solução de nitratos de zirconila e outros nitratos metálicos em solução aquosa com composto orgânico de etanol metanol ou acetona, através do controle de molaridade. Embora não limitantes, valores ideais para molaridade das soluções são: entre 1,00 e 0,29 para obtenção de pó entre 0,29 e 0,18 para obtenção de superfície recoberta e entre 0,18 e 0,13 para obtenção de filmes finos. Manter a solução a 0°C para formação de filmes finos por imersão do substrato ou monocristal com velocidade constante ("dip-coating") ou por rotação a velocidade constante ("spinning"), ou para recobrimento de superfícies metálicas através de imersões sucessivas do substrato metálico a velocidade constante ("dip-coating"). Elevar a solução a 50°C para hidrolização e formação de um gel em forma de pó, secagem de pó ou liofilização, calcinação e moagem dos aglomerados.
Resumo:
The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection - SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites.
Resumo:
Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.
Resumo:
Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To investigate the adhesive potential of novel zirconia primers and universal adhesives to surface-treated zirconia substrates.Methods: Zirconia bars were manufactured (3.0 mm x 3.0 mm x 9.0 mm) and treated as follows: no treatment (C); air abrasion with 35 mu m alumina particles (S); air abrasion with 30 mu m silica particles using one of two systems (Rocatec or SilJet) and; glazing (G). Groups C and S were subsequentially treated with one of the following primers or adhesives: ZP (Z-Prime Plus), AZ (AZ Primer); MP (Monobond Plus); SU (ScotchBond Universal) and; EA (an Experimental Adhesive). Groups Rocatec and SilJet were silanized prior to cementation. Samples form group G were further etched and silanized. Bars were cemented (Multilink) onto bars of a silicate-based ceramic (3.0 mm x 3.0 mm x 9.0 mm) at 90 degrees angle, thermocycled (2.500 cycles, 5-55 degrees C, 30 s dwell time), and tested in tensile strength test. Failure analysis was performed on fractured specimens to measure the bonding area and crack origin.Results: Specimens from group C did not survive thermocycling, while CMP, CSU and CEA groups survived thermocycling but rendered low values of bond strength. All primers presented a better bond performance after air abrasion with Al2O3 particles. SilJet was similar to Rocatec, both presenting the best bond strength results, along with SMP, SSU and CEA. G promoted intermediate bond strength values. Failure mode was predominately adhesive on zirconia surface combined to cohesive of the luting agent.Conclusions: Universal adhesives (MP, SU, EA) may be a considerable alternative for bonding to zirconia, but air abrasion is still previously required. Air abrasion with silica particles followed by silane application also presented high bond strength values. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effects of two surface treatments, aging, and two resin cements on shear bond strength between dentin and yttrium-stabilized tetragonal zirconia polycrystal ceramic (Y-TZP).Materials and Methods: Eighty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. These teeth and 80 cylindrical Y-TZP specimens (height, 4 mm; diameter, 3.4 mm) were divided into eight groups (n=10) using the following factors: Y-TZP surface treatment (Vi: low-fusing porcelain [vitrification] + hydrofluoric acid etching + silanization or Si: tribochemical silicatization); cementation strategies (PF: Pan avia or CC: Clearfil); and storage (nonaging or aging). Bonding surfaces of 40 Y-TZP specimens received Vi treatment, and the rest received Si treatment. Half of the ceramic-tooth assemblies were cemented with Panavia, the rest with Clearfil. Shear tests were executed using 0.4-mm-thick wire at 0.5 mm/min. Data were analyzed by three-way analysis of variance and Tukey test (alpha=0.05). Fractures were analyzed.Results: Y-TZP surface treatments did not affect bond strength (p=0.762, Vi = Si), while resin cements (p<0.001, Panavia > Clearfil) and aging (p=0.006, nonaging > aging) showed a significant effect. Most failures were in adhesive at dentin-cement interfaces; no failure occurred between zirconia and cement.Conclusion: When Y-TZP ceramic is bonded to dentin, the weakest interface is that between dentin and resin cement. The resin cement/Y-TZP interface was less susceptible to failures, owing to Y-TZP surface treatments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR