148 resultados para relative dielectric constant
Resumo:
Polycrystalline SrTiO3 thin films having a cubic perovskite structure were prepared at different temperatures by the polymeric precursor method on platinum-coated silicon substrate. Crystalline films with uniform composition and thickness were prepared by spin-coating and the post-deposition heat treatment was carried out at different temperatures. The film showed good structural, dielectric, and insulating properties, Scanning electron microscopy (SEM) micrographs showed no occurrence of interdiffusion between the bottom electrode (platinum) and the film during post-annealing, indicating a stable interface between the SrTiO3 and the bottom electrode. The dielectric constant and dissipation factor at a frequency of 100 kHz were 250 and 0.01, respectively, for a 360 nm thick film annealed at 600 degreesC. The capacitance versus applied voltage characteristics showed that the capacitance was almost independent of the applied voltage. The I-V characteristics were ohmic in low fields and a Schottky emission and/or Poole-Frenkel emission were postulated in high fields. Room temperature leakage current density was found to be in the order of 10(-7) A/cm(2) for a 360 nm thick film in an applied electric field of about 100 kV/cm. The charge storage density of 36 fC/mum(2) was obtained in an applied electric field of about 100 kV/cm. (C) 2001 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
High-quality (Pb, La)TiO3 ferroelectric thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. The X-ray diffraction patterns show that the films are polycrystalline in nature. This method allows for low temperature (500 degrees C) synthesis, a high quality microstructure and superior dielectric properties. The effects on the microstructure and electrical properties were studied by changing the La content. The films annealed at 500 degreesC have a single perovskite phase with only a tetragonal or pseudocubic structure. As the La content is increased, the dielectric constant of PLT thin films increases from 570 up to 1138 at room temperature. The C-V and P-E characteristics of perovskite thin films prepared at a low temperature show normal ferroelectric behavior, representing the ferroelectric switching property. The remanent polarization and coercive field of the films deposited decreased due to the transformation from the ferroelectric to the paraelectric phase with an increased La content. (C) 2001 Kluwer Academic Publishers.
Resumo:
Pure and Nb doped PbZr0.4Ti0.603 thin films was prepared by the polymeric precursor method and deposited by spin coating on Pt/Ti/SiO2/Si (100) substrates and annealed at 700 degreesC. The films are oriented in (1 1 0) and (1 0 0) direction. The electric properties of PZT thin films show strong dependence of the crystallographic orientation. The P-E hysteresis loops for the thin film with composition PbZr0.39Ti0.6Nb0.103 showed good saturation, with values for coercive field (E-c) equal to 60 KV cm(-1) and for remanent polarization (P-r) equal to 20 muC cm(-2). The measured dielectric constant (epsilon) is 1084 for this film. These results show good potential for application in FERAM. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
Pb1-xCaxTiO3 (0.10less than or equal toxless than or equal to0.40) thin films on Pt/Ti/SiO2/Si(100) substrates were prepared by the soft solution process and their characteristics were investigated as a function of the calcium content (x). The structural modifications in the films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate a decrease in lattice tetragonality with the increasing content of calcium in these films. Raman spectra exhibited characteristic features of pure PbTiO3 thin films. Variations in the phonon mode wave numbers, especially those of lower wave numbers, of Pb1-xCaxTiO3 thin films as a function of the composition corroborate the decrease in tetragonality caused by the calcium doping. As the Ca content (x) increases from 0.10 to 0.40, the dielectric constant at room temperature abnormally increased at 1 kHz from 148 to 430. Also calcium substitution decreased the remanent polarization and coercive field from 28.0 to 5.3 muC/cm(2) and 124 to 58 kV/cm, respectively. These properties can be explained in terms of variations of phase transition (ferroelectric-paraelectric), resulting from the substitution the lead site of PbTiO(3)for the nonvolatile calcium. (C) 2002 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
Resumo:
The effect of magnesium addition on the phase formation, microstructure and electric and ferroelectric properties of LiNbO 3 thin films prepared through polymeric precursors was analyzed. By X ray diffraction no secondary phase was observed with the increase of magnesium concentration. Comparing to pure LiNbO 3, the addition of 0.5 and 1.0 mol% of Mg +2 increased of the dielectric constant, while 2.0 mol% decreased it. It was noticed that the increase in additive concentration decreases the ferroelectric remanent polarization and increases the coercive field. © 2002 Taylor & Francis.
Resumo:
Barium titanate is used extensively as a dielectric in ceramic capacitors, particularly due to its high dielectric constant and low dielectric loss characteristics. It can be made semiconducting by addition of certain dopants and by proper modification of grains and grain boundary properties obtaining very interesting characteristics for various applications. The synthesis method and sintering regime have a strong influence on properties of obtained barium titanate ceramics. Doped barium titanate was prepared with Nb+5 and Y+3 ions as donor dopants, and with Mn+2 ions as acceptor dopant by polymeric precursors method. By this procedure nanosized powders were obtained after calcination. Sintering was performed in the temperature range of 1290°C to 1380°C The microstructure of doped BaTiO3 was performed using scanning electron microscopy. The influence of dopants and sintering temperature on grain size was analysed.
Resumo:
PMN belongs to a special class of materials named relaxor ferroelectrics. It has high volumetric efficiency due to its high dielectric constant, which makes it in a perfect material for application in multilayer capacitors. When prepared the columbite route its preparation has many advantages. In this work, the preparations of columbite and PMN were done by Pechini and Partial Oxalate methods, respectively. The effects of the KNbO3 and LiNbO3 dopants added in various concentrations. The idea is founded on the correlations that they have with BaTiO3 y PbTiO3, respectively. The whole process was supervised by TG/DTA, XRD, SEM and determination of the specific surface area of the powders. LiNbO3 carries out the pre-sinterization of the particles, observed by a reduction in the surface area. There are not particle grow, but occur its lengthening. However, for KNbO3 these particle growth, but the agglomerates are softer. The effect produced by the doping during the synthesis of the PMN powder is different from the one produced in the columbite precursor. Pure precursor shows an average particle size of 0,2μm, but the addition of 5,0mol% of dopants carries out the formation of agglomerates close to 4μm. LiNbO 3 addition carries out spherical particles and pre-sinterization, while KNbO3 addition does not change the particles shape.