109 resultados para random coefficient models
Resumo:
The objectives of this study were to estimate genetic parameters for test-day milk, fat and protein yields, in Murrah buffaloes. In this study 4,757 complete lactations of Murrah buffaloes were analyzed. The (co) variance components were estimated by restricted maximum likelihood using MTDFREML software. The bi-trait animal test-day models included genetic additive direct and permanent environment effects, as random effects, and the fixed effects of contemporary group (herds-year-month of control) and age of the cow at calving as linear and quadratic covariable. The heritability estimate at first control was 0.19, increased until the third control (0.24), decreasing thereafter, reaching the lowest value at the ninth control (0.09). The highest heritability estimates for fat and protein yield were 0.23 (first control) and 0.33 (third control), respectively. For milk yield, genetic and phenotypic correlation estimates ranged from 0.37 to 0.99 and from 0.52 to 0.94, respectively. Genetic correlations were higher than phenotypic ones. For fat and protein yields, genetic correlation estimates ranged from 0.42 to 0.97.
Resumo:
The study of the association between two random variables that have a joint normal distribution is of interest in applied statistics; for example, in statistical genetics. This article, targeted to applied statisticians, addresses inferences about the coefficient of correlation (ρ) in the bivariate normal and standard bivariate normal distributions using likelihood, frequentist, and Baycsian perspectives. Some results are surprising. For instance, the maximum likelihood estimator and the posterior distribution of ρ in the standard bivariate normal distribution do not follow directly from results for a general bivariate normal distribution. An example employing bootstrap and rejection sampling procedures is used to illustrate some of the peculiarities.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
Resumo:
In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.
Resumo:
Mature weight breeding values were estimated using a multi-trait animal model (MM) and a random regression animal model (RRM). Data consisted of 82 064 weight records from 8 145 animals, recorded from birth to eight years of age. Weights at standard ages were considered in the MM. All models included contemporary groups as fixed effects, and age of dam (linear and quadratic effects) and animal age as covariates. In the RRM, mean trends were modelled through a cubic regression on orthogonal polynomials of animal age and genetic maternal and direct and maternal permanent environmental effects were also included as random. Legendre polynomials of orders 4, 3, 6 and 3 were used for animal and maternal genetic and permanent environmental effects, respectively, considering five classes of residual variances. Mature weight (five years) direct heritability estimates were 0.35 (MM) and 0.38 (RRM). Rank correlation between sires' breeding values estimated by MM and RRM was 0.82. However, selecting the top 2% (12) or 10% (62) of the young sires based on the MM predicted breeding values, respectively 71% and 80% of the same sires would be selected if RRM estimates were used instead. The RRM modelled the changes in the (co)variances with age adequately and larger breeding value accuracies can be expected using this model. © South African Society for Animal Science.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross-bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick-resistant animals. © 2013 Blackwell Verlag GmbH.
Resumo:
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Objectives: To investigate the reliability of regional three-dimensional registration and superimposition methods for assessment of temporomandibular joint condylar morphology across subjects and longitudinally.Methods: The sample consisted of cone beam CT scans of 36 patients. The across-subject comparisons included 12 controls, mean age 41.3 +/- 12.0 years, and 12 patients with temporomandibular joint osteoarthritis, mean age 41.3 +/- 14.7 years. The individual longitudinal assessments included 12 patients with temporomandibular joint osteoarthritis, mean age 37.8 +/- 16.7 years, followed up at pre-operative jaw surgery, immediately after and one-year post-operative. Surface models of all condyles were constructed from the cone beam CT scans. Two previously calibrated observers independently performed all registration methods. A landmark-based approach was used for the registration of across-subject condylar models, and temporomandibular joint osteoarthritis vs control group differences were computed with shape analysis. A voxel-based approach was used for registration of longitudinal scans calculated x, y, z degrees of freedom for translation and rotation. Two-way random intraclass correlation coefficients tested the interobserver reliability.Results: Statistically significant differences between the control group and the osteoarthritis group were consistently located on the lateral and medial poles for both observers. The interobserver differences were <= 0.2 mm. For individual longitudinal comparisons, the mean interobserver differences were <= 0.6 mm in translation errors and 1.2 degrees in rotation errors, with excellent reliability (intraclass correlation coefficient >0.75).Conclusions: Condylar registration for across-subjects and longitudinal assessments is reliable and can be used to quantify subtle bony differences in the three-dimensional condylar morphology.
Resumo:
Adjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)