97 resultados para biomimetic
Resumo:
The success of rehabilitation will not depend on just clinical procedures. A proper dental technique (ceramist) is required as well as the respect for some biomimetic principles to obtain the desired final result. This study has the purpose of describing a prosthetic rehabilitation with laminate veneers and all-ceramic crowns of a patient unsatisfied with a previous esthetic treatment because of the negligence of some biomimetic principles. A 45-year-old female patient was admitted to the dental clinic complaining about the lifelike appearance of her all-ceramic restorations. Before the fabrication of new restorations, a mock-up was conducted to verify the patient's satisfaction. A ceramist conducted all the fabrication process so that surface characterizations could be visually verified and the lifelike appearance of natural tooth could be reproduced. After the cementation procedure, the patient reported being satisfied with the lifelike appearance of the new restorations. Based on the clinical findings of the present case report, it can be concluded that the reproduction of the lifelike esthetic appearance of natural teeth and the visualization of the final results before definitive procedures are essential to obtain the clinical success.
Resumo:
Natural rubber latex (NRL) is a flexible biomembrane that possesses angiogenic properties and has recently been used for guided bone regeneration, enhancing healing without fibrous tissue, allergies or rejection. Calcium phosphate (Ca/P) ceramics have chemical, biological, and mechanical properties similar to mineral phase of bone, and ability to bond to the host tissue, although it can disperse from where it is applied. Therefore, to create a composite that could enhance the properties of both materials, NRL biomembranes were coated with Ca/P. NRL biomembranes were soaked in 1.5 times concentrated SBF solution for seven days, avoiding the use of high temperatures. SEM showed that Ca/P has been coated in NRL biomembrane, XRD showed low crystallinity and FTIR showed that is the carbonated type B. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Ca/P, NRL, and NRL + Ca/P) showed no hemolytic effects up to 0.125 mg/mL (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. The results show that the biomimetic is an appropriate method to coat NRL with Ca/P without using high temperatures, aiming a new biomembrane to improve guided bone regeneration.
Resumo:
Introduction: In dentistry, alveolar bone resorption is a limiting factor in the well being of individuals directly interfering in the stomatognathic system, causing problems in the context of overall health. Aiming to promote biological methods that can stimulate bone regeneration, several biomimetic strategies have been developed by the use of diverse materials possible to the bone matrix, culminating in the development of techniques that promote such repair. Objective: This work is a comparative study of the performance of films made with latex as occlusive membrane for Guided Bone Regeneration (GBR) procedure in three preparations: Latex preserved in ammonia, produced by Latex rubber clones IAN873 and PR255 polymerized immediately after collection and without use ammonia as a preservative. Methods: Sixty Wistar rats were randomly divided into 4 groups of 15 animals in which bone defects of critical size (8mm diameter) were made surgically in the skull. Group A was treated by GBR through the membrane latex preserved with ammonia, Group B received the membrane made of latex from IAN873, Group C, the membrane clone PR255 and group D was not treated by GBR. After a period of 7, 15 and 50 days, 5 animals from each group were euthanized, and specimens containing bone defect collected for microscopic examination (descriptive histology and histomorphometry). Results: The results showed that after 50 days there was bone formation in higher proportions in group D (p <0.05, ANOVA followed by Tukey), suggesting that further experiments should be conducted to conclude about the presence of ammonia and the influence of kind of rubber. Conclusion: GOR is a procedure proven effective in the treatment of bone defects. Therefore, further experiments should be conducted to reach a conclusion regarding the presence of ammonia in the latex composition for the manufacture of membranes, as well as the difference induced by the species of rubber.
Resumo:
The purpose of the study was to evaluate the influence of the biomimetic surface treatment in osseointegration of experimental alloy Ti30Ta for dentistry applications. Methods and materials: Experimental alloy with Ta concentration of 30 wt% was produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Ingots were melted in an arc furnace under an argon atmosphere and re-melted ten times at least. They were homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and cold-worked by swaging. Implants with 2.5 mm diameter and 2.0 mm of height were machined (Fig. 1a), treated and inserted in animals for in vivo study. The implants were submitted surface treatment according methodology development for our group. Analyzes were performed by Scanning Electron microscopy (SEM), Atomic Force Microscopy (AFM). Osteoblast morphology on Ti-30Ta alloys was examined after 4 and 7 days of incubation with MSCs using SEM imaging.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Surface treatments have been used to modify the surface of titanium alloys. The purpose of this study is to evaluate the surface of Ti-30Ta alloy after biomimetic approach associated to antibiotic incorporation. The ingots were obtained in arc melting furnace, treated and cold-worked by swaging. The surface treatment was performed in two steps: biomimetic treatment and antibiotic incorporation. For biomimetic treatment, first an alkaline treatment (NaOH 1M at 60ºC) was performed, followed by heat treatment and immersion in SBFx5 (Simulated Body Fluid) for a period of 24 hours. In order to incorporate the antibiotic, samples were immersed in a solution formed by drugs plus SBFx5 for 48 hours. The sample surfaces were analyzed by scanning electron microscopy (SEM), X-Ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements. The release of antibiotic from coated implants was measured in phosphate buffer saline at pH 7.4 by using UV/VIS spectrometry. Results have shown changes on the surface after incorporating the drug, which is gradually co-precipitated with the Ca-P crystals, forming a uniform and rough layer on the metal surface