114 resultados para Systemic inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 mu l, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1 +/- 5.5 ml/2 h vs. vehicle: 1.8 +/- 0.6 ml/2 h), without changing water intake (15.8 +/- 3.0 ml/2 h vs. vehicle: 9.3 +/- 2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 mu l) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7 +/- 3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoking is considered to be the most albeit preventable cause of diseases and premature deaths in the history of mankind. The local action of tobacco on the oral mucosa can cause precancerous and cancerous lesions. However, there is not enough evidence to establish all the systemic effects caused by nicotine on the organism. Thus, the aim of the present study was to characterize the cellular changes of the cheek mucosa of rats submitted to long-term systemic nicotine treatment. Twenty male rats were divided into two experimental groups: a nicotine group and a control group, each consisting of 10 animals. The nicotine group was injected daily with 0.250 mg of nicotine per 100 g of body weight. All animals received a solid diet and water ad libitum. After 90 days of treatment, all animals were weighed and sacrificed. Samples of cheek mucosa were collected for light and transmission electron microscopy. The results revealed oral epithelium containing atypical cells that were characterized by atrophy, cell membrane disorganization and tissue damage. It was concluded that systemic administration of nicotine damaged the cellular integrity of the oral mucosa, impairing tissue function and predisposing the tissue to the action of different pathogenic agents and also to that of other carcinogenic substances present in tobacco. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective and design: To determine the expression pattern and distribution of the glucocorticoid-inducible protein annexin 1 (ANXA1) in a murine model of chronic granulomatous inflammation.Materials or subjects: TO Mouse.Treatment: Chronic granulomatous inflammation was induced by injecting into dorsal sub-cutaneous air-pouches in mice, a mixture of croton oil and Freund's complete adjuvant (CO/FCA).Methods: Western and northern analysis, corticosterone assay, and immunohistochemistry. Statistical analysis was performed using ANOVA followed by Tukey's pair-wise comparisons or Dunnett's multiple comparisons.Results: ANXA1 protein levels changed significantly throughout the 4-week time course, with an initial peak at day 7 and a later elevation at 28 days. ANXA1 mRNA levels peaked at days 1 and 3, with a significant decline at day 7 followed by an upward trend to day 28. Plasma corticosterone measurements taken throughout the time course revealed an increase from 14 days onward, suggesting that corticosterone does not influence ANXA1 expression during the initial stages of the model. Immunogold staining revealed that ANXA1 expression in the inflamed tissue was mainly in extravasated neutrophils, with intact protein (37 kDa) being predominantly observed on the cell membrane.Conclusions: the pattern of ANXA1 expression indicates that infiltrated neutrophils are responsible for the majority of ANXA1 present both at early and later stages of this model of granulomatous inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence and localization of the anti-inflammatory protein annexin 1 (also known as lipocortin 1) in perivenular rat mast cells was investigated here. Using the rat mesenteric microvascular bed and a combination of morphologic techniques ranging from immunofluorescence to electron microscopy analyses, we detected the presence of annexin 1 in discrete intracellular sites, both in the nucleus and in the cytoplasm. In resting mast cells, most of the protein pool (approximately 80% of the cytosolic portion) was localized to cytoplasmic granules. In agreement with other cell types, treatment of rats with dexamethasone (0.2 mg/kg, ip) increased annexin 1 expression in mast cells, inducing a remarkable appearance of dusters of protein immunoreactivity. This effect was most likely the result of de novo protein synthesis as determined by an increase in mRNA seen by in situ hybridization. Triggering an ongoing experimental inflammatory response (0.3 mg of carrageenin, ip) increased annexin 1 mRNA and protein levels. In conclusion, we report for the first time the localization of annexin 1 in connective tissue mast cells, and its susceptibility not only to glucocorticoid hormone treatment, but also to an experimental acute inflammatory response.