185 resultados para Stochastic Di¤erential Equation
Resumo:
O objetivo desse artigo é caracterizar as fontes da ineficiência técnica e alocativa em um conjunto de 308 beneficiários de um programa de reforma agrária de mercado, chamado Cédula da Terra;, distribuídos em cinco estados do Nordeste brasileiro. Estudos conduzidos por Buainain et al. (2002) mostraram existem poucas diferenças entre as características de beneficiários deste programa e dos programas tradicionais de reforma agrária por expropriação e que portanto, os resultados obtidos por este trabalho permitem visualizar as dificuldades enfrentadas pelos assentamentos no Brasil. Para medir eficiência, estimou-se uma função de produção potencial segundo a metodologia de Battese e Coelli (1995) e a partir disto, procurou-se explicar as razões da ineficiência (relativa) encontrada. Os resultados apontam para a existência de ineficiência técnica e alocativa que é identificada principalmente nas situações em que a presença de produção para consumo é elevada. Tratase de um resultado que revela a pouca maturidade da maioria dos lotes dos assentados do PCT e a dificuldade de superar as limitações impostas pela condição inicial de formação dos assentamentos de reforma agrária, principalmente na região nordeste do Brasil.
Resumo:
The analytical solution of the Poisson-Boltzmann equation in an electrolyte with four ionic species (2:2:1:1), in the presence of a charged planar membrane or surface is presented. The function describing the mean electrical potential provides a convenient description that helps the understanding of electrical processes of biological interest.
Resumo:
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.
Resumo:
We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
The Poisson-Boltzmann equation (PBE), with specific ion-surface interactions and a cell model, was used to calculate the electrostatic properties of aqueous solutions containing vesicles of ionic amphiphiles. Vesicles are assumed to be water- and ion-permeable hollow spheres and specific ion adsorption at the surfaces was calculated using a Volmer isotherm. We solved the PBE numerically for a range of amphiphile and salt concentrations (up to 0.1 M) and calculated co-ion and counterion distributions in the inside and outside of vesicles as well as the fields and electrical potentials. The calculations yield results that are consistent with measured values for vesicles of synthetic amphiphiles.
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.
Resumo:
We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.
Resumo:
Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We use a non usual realization of the superalgebra to resolve certain two-dimensional potentials. The Hartmann and an anisotropic ring-shaped oscillator are explicitly solved.