135 resultados para Prooxidant compounds
Resumo:
Plants from Iryanthera genus have been traditionally used as food supplements by South American Indians. The MeOH extract of leaves of Iryanthera juruensis, one of the plants endemic to the Amazon region and consumed in Brazil, and the hexane extract from its seeds inhibited lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2)) enzymes in in vitro assays. Further analyses of these extracts yielded 5-deoxyflavones (1-5) from the leaf extract and sargachromenol (6), sargaquinoic acid (7), a novel juruenolic acid (8), omega-arylalkanoic acids (9a-c), and the lignan guaiacin (10) from the seed extract. Compounds 3-5 inhibited LPO by 86%, 77%, and 88% at 10 ppm, respectively, and compounds 6 and 9a-c showed inhibition at 76% and 78% at 100 ppm, respectively. However, compounds 7 and 8 were inactive and lignan 10 exhibited LPO inhibitory activity by 99% at 100 ppm compared to commercial antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and vitamin E. The flavones 1-5 also inhibited COX-1 and -2 enzymes by 50-65% at 100 ppm. Compound 6 showed high but nonselective inhibition of COX-1 and COX-2 enzymes, when compared to aspirin and Celebrex, a nonsteroidal anti-inflammatory drug (NSAID). Compounds 7 and 10 inhibited COX-1 by 60% and 65% and COX-2 by 37% and 18%, respectively, whereas compounds 8 and 9a-c showed little or no activity against these enzymes.
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A study using two classification methods (SDA and SIMCA) was carried out in this work with the aim of investigating the relationship between the structure of flavonoid compounds and their free-radical-scavenging ability. In this work, we report the use of chemometric methods (SDA and SIMCA) able to select the most relevant variables (steric, electronic, and topological) responsible for this ability. The results obtained with the SDA and SIMCA methods agree perfectly with our previous model, in which we used other chemometric methods (PCA, HCA and KNN) and are also corroborated with experimental results from the literature. This is a strong indication of how reliable the selection of variables is.
Resumo:
The water produced by the Cristais River Drinking Water Treatment Plant (CR-DWTP) repeatedly produced mutagenic responses that could not be explained by the presence of disinfection byproducts (DBPs) generated by the reaction of humic acids and chlorine. In order to determine the possible role of chlorinated dye products in this mutagenic activity, solutions of a black dye commercial product (BDCP) composed of C. I. Disperse Blue 373, C. I. Disperse Orange 37, C. I. Disperse Violet 93, and chemically reduced BDCP (R-BDCP) were chlorinated in a manner similar to that used by the CR-DWTP. The resulting solutions were extracted with XAD-4 along with one drinking water sample collected from the CR-DWTP. All extracts showed mutagenic activity in the Salmonella/microsome assay. Dye components of the BDCP as well as its reduced chlorinated (Cl-R-BDCP) derivative were detected in the drinking water sample by analysis with a high performance liquid chromatography/diode array detector (HPLC/DAD). The mutagenicity results of these products suggest that they are, at least in part, accounting for the mutagenic activity detected in the drinking water samples from the Cristais River. The data obtained in this study have environmental and health implications because the chlorination of the BDCP and the R-BDCP leads to the formation of mutagenic compounds (Cl-BDCP and Cl-R-BDCP), which are potentially important disinfection byproducts that can contaminate the drinking water as well as the environment.
Resumo:
This work describes an application of principal component analysis (PCA) on a database of secondary metabolites from the Asteraceae family. The numbers of occurrences of metabolites in 11 chemical classes for the different vibes of the family were used as variables, PCA allows the identification of chemical classes that contribute most to the subgroups classification within the family. Relationships between chemical composition and botanical classification were made. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Solid state Ln-4-Me-BP compounds, where Ln stands for lighter trivalent lanthanides (lanthanum to europium) and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The selectivity of I-hexene metathesis using WCI6 as catalyst was evaluated with a series of hydrosilane-compounds as cocatalysts: Ph3SiH, Ph2SiH2, PhSiH3 and polymethylhydrosiloxane (PMHS). The metathesis reaction is favored by the addition of promoters. When in the presence of WCl4(OAr)(2), OAr = 2,6-dichlorophenoxide, 2,6-difluorophenoxide, olefin metathesis occurs with good selectivity without the use of promoters. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fourteen samples of particulate matter and semi-volatile organic compounds were collected during 6 months in the city of Campo Grande, South Mato Grosso State, Brazil. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on Fluoropore PTFE filters and gas-phase PAHs were collected into sorbent tubes with XAD-2 resin. Both types of samples were extracted with a dichloromethane/methanol mixture (4:1 v/v), then the extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis. PAHs, oxidized PAH (oxy-PAHs), phenols and methoxyphenols were identified by use of GC retention indices and MS files. The average value obtained for the sum of 15 PAHs was 21.05 ng m(-3) (range: 8.94-62.5 ng m(-3)). The presence of specific tracers and calculations of characteristic ratios (e.g. [Phe]/[Phe] + [Ant]) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Levoglucosan (the anhydride of beta-glucose), retene (1-methyl-7-isopropylphenanthrene) and methoxyphenols (derivatives of syringol and guaiacol) and tracers for wood burning were identified. This study demonstrates that biomass burning from the rural zone is the main source of PAHs and emissions of other substances in the investigated site of Campo Grande. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Occurrence and the effects of butyltin compounds (BTs) have been studied for some years, mainly in countries of the Northern Hemisphere. Due to widespread use of tributyltin compounds (TBTs) and considering their deleterious effects, it is necessary to conduct studies on its occurrence, especially in the marine environment because of its excessive use in coatings of ship hulls to prevent fouling. Moreover, it was important to extend the evaluation to areas where there is no current information about their occurrence. The present work reports the occurrence of BTs in marine sediments of São Paulo state, Brazil. Commercial and leisure harbor sampling sites were selected because these areas are potentially exposed to BTs from antifouling paints used on ship hulls. Analytical conditions for organotin analysis in marine sediments were optimized for GC with pulsed flame photometric detection. Detection limits ranged from 8.4 to 66.3 ng g(-1) using a 610-nm filter, and the linearity range was 20-500 ng g(-1). Concentration levels of BTs were highest in Santos harbor (360 ng g(-1) TBT in average) and Guaruja marina (670 ng g(-1) TBT in average), which seems to be related to intensive boat traffic. Lower levels of BTs were observed in Cananeia, where only fishing boats are present (50 ng g(-1) TBT in average). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The cyanate-bridged cyclopalladated compound [Pd(N,C-dmba)(mu-NCO)](2) (1) (dmba = PhCH2NMe2) reacts in CH2Cl2 with 2,3-lutidine (2,3- lut), 3,4-lutidine (3,4-lut), 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy), to give [Pd(N, C-dmba)(NCO)(2,3-lut)] (2), [Pd(N,C-dmba)(NCO)(3,4-lut)] (3), [{Pd(N,C-dmba)(NCO)}(2)(mu-2,2'-bipy)] .CH2Cl2 (4) and [{Pd(N,C-dmba)(NCO)}(2)(mu-4,4'-bipy)] . CH2Cl2 (5), respectively. The compounds were characterized by elemental analysis, i.r. and n. m. r. spectroscopy and also by t.g.a. The i.r. spectra of (2 - 5) display typical bands of monodentate N-bonded cyanate groups, whereas the n. m. r. data of (4) are consistent with the presence of a bridging 2,2'-bipyridine ligand. Complex (4) decomposes slowly in acetone. One of the products formed, [Pd(H2CCOMe) Cl(2,2'-bipy)] (6), was characterized by X-ray diffraction. As inferred from the t.g.a., the thermal stability decreases in the order: [{Pd(N,C-dmba)(NCO)}(2) (mu-4,4'-bipy)]. CH2Cl2 (5) > [Pd(N,C-dmba)(2,3-lut)( NCO)] (2) = [Pd(N, C-dmba)(3,4-lut)(NCO)] (3) > [{Pd(N,C-dmba)(NCO)}(2)(mu- 2,2'-bipy)] .CH2Cl2 (4). According to thermal analysis and X-ray diffraction patterns compounds (2 - 3) decompose into metallic palladium Pd(0), whereas (4 - 5) decompose with the formation of PdO. The X-ray crystal and molecular structure of [Pd(N, C-dmba)( NCO)(2,3-lut)] (2) was determined. The lutidine unit is perpendicular to the coordination plane.
Resumo:
Cashew apple nectar is a secondary product from the production of cashew nuts and possesses an exotic tropical aroma. Aroma volatiles in pasteurized and reconstituted (from concentrate) Brazilian cashew apple nectars were determined using GC-MS and split, time-intensity GC-olfactometry (GC-O/GC-FID. Methional, (2)-1,5-octadien-3-one, (2)-2-nonenal, (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal, beta-damascenone, and delta-decalactone were identified for the first time in cashew apple products. These compounds plus butyric acid, ethyl 3-methylbutyrate, 2-methylbutyric acid, acetic acid, benzaldehyde, homofuraneol, (E)-2-nonenal, gamma-dodecalactone, and an unknown were the most intense aroma volatiles. Thirty-six aroma volatiles were detected in the reconstituted sample and 41 in the pasteurized sample. Thirty-four aroma active components were common to both samples. Ethyl 3-methylbutyrate and 2-methylbutyric acid were character impact compounds of cashew apple (warm, fruity, tropical, sweaty). Using GC-pFPD, 2-methyl-3-furanthiol and bis(2-methyl-3-furyl) disulfide were identified for the first time in cashew apple. Both were aroma active (meaty).
Resumo:
By close control of experimental variables affecting precipitation, solid-state compounds of the type Th(OH)(m)L4-m.nH(2)O, where L stands for 4-methoxy-benzylidenepyruvate, cinnamylidenepyruvate or 4-dimethylaminocinnamylidene-pyruvate; m=0 to 3 and n=0.5-3 were isolated. Chemical analysis, TG, DTG, DSC and X-ray powder diffractometry have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. In all cases, hydration water is slowly lost between 30 and 160degreesC; a continuous, slow rate, mass loss is observed thereafter and beyond 280-400degreesC the rate of decomposition/oxidation increased rapidly, to give ThO2 as the final product, beginning at 412-510degreesC. The results associated with the hydroxo-compounds indicate that the loss of constitution water (OH ions) and the decomposition / oxidation of the organic moieties occur as simultaneous process.
Resumo:
Solid-state M-2-Cl-BP, where M stands for Mn, Fe, Co, Ni, Cu, Zn and Pb and 2-Cl-BP is 2-chlorobenzylidenepyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion-exchange resin (Amberlyte IR - 120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion-controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for quinoline (-1.95 V) and pyridine (-2.52 V) vs. Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L-1 and a limit of detection (LOD) of 5.05 and 0.25 mu g L-1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0 +/- 0.3 and 33.0 +/- 0.7 mg L-1 and in diesel samples yielded 80.3 +/- 0.2 and 131 +/- 0.4 mg L-1, respectively. Spike recoveries were 94.4 +/- 0.3% and 10 +/- 0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV-vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.