143 resultados para Empiric equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biometric relationship between the weigth and the carapace width in the swimming crab A. cribrarius was compared with the results from other portunid crabs studied previously. During November/1988 to October/1989, a total of 403 specimens (189 males and 214 females) were collected with otter-trawl nets in north coast of the São Paulo State, Brazil. The animals were measured (carapace width excluding lateral spines = LC! and weighed (wet weight = PE). The empiric points of this relation were fit according to the power function (Y = a.X(b)) for each sex, maturation phases and total of individuals. The relation PE x LC indicates that the mole's growth changes during the ontogenesys from isometric (in juvenile phase) to allometric positive (in adult phase). For the females the growth is isometric in the two phases. The weight grows in a higher proportion than the carapace width variable (allometric positive growth). The data can be grouped in a single equation (PE = 7.85.10(-5).LC(3.14)) for the convertion between the variables there was a greater similarity between the equations obtained far each sex. In spite of this, the males present the fattening grade value (''a'') slightly higher than that of the females, possibly because of the greater size reached in its devellopment. The mean weight of the males is greater than the females one (p < 0.01). In the range 80 proves 90mm the males were more abundant, probably due to the females terminal ecdysis is near this size. The females only have the mean weight greater than the males in the 60 proves 70mm range (p < 0.01) when the puberty molt occurs and they present morphological changes in their reproductive system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrodinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient and a basic nonlinear bulk velocity profile. In the limit of long wavelength and large nondimensional surface tension we show that hydrothermal surface-wave instabilities may give rise to disturbances governed by the Kuramoto-Sivashinsky equation. A possible connection to hot-wire experiments is also discussed. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the parameters of the Johnson-Mehl-Avrami equation was studied using two parametrizations of the sigmoidal function and its fit to some kinetic data. The results indicate that one of the forms of the function has more stable parameters and only for this form it is reasonable to use, as an approximation, the linear regression theory to analyse the parameters. © 1995 Chapman & Hall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine the solutions of the Schrödinger equation for an asymptotically linear potential. Analytical solutions are obtained by superalgebra in quantum mechanics and we establish when these solutions are possible. Numerical solutions for the spectra are obtained by the shifted 1/N expansion method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gel'fand-Levitan formalism is used to study how a selected set of bound states can be eliminated from the spectrum of the Coulomb potential and also how to construct a bound state in the Coulomb continuum. It is demonstrated that a sizeable quantum well can be produced by deleting a large number of levels from the s spectral series and the edge of the Coulomb potential alone can support the von Neumann-Wigner states in the continuum. © 1998 Elsevier Science B.V.