123 resultados para Elementary particle sources
Resumo:
Results are presented from a search for a W' boson using a dataset corresponding to 5.0fb-1 of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at s=7TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W'→tb, leading to a final state signature with a single electron or muon, missing transverse energy, and jets, at least one of which is identified as a b-jet. A W' boson that couples to the right-handed (left-handed) chiral projections of the fermions with the same coupling constants as the W is excluded for masses below 1.85 (1.51) TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge couplings for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits. © 2012 CERN.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
The results of a search for flavor changing neutral currents in top quark decays t→Zq in events with a topology compatible with the decay chain tt̄→Wb+Zq→ℓνb+ℓℓq are presented. The search is performed with a data sample corresponding to an integrated luminosity of 5.0 fb-1 of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. The observed number of events agrees with the standard model prediction and no evidence for flavor changing neutral currents in top quark decays is found. A t→Zq branching fraction greater than 0.21% is excluded at the 95% confidence level. © 2012 CERN.
Resumo:
Many models of new physics, including versions of supersymmetry (SUSY), predict production of events with low missing transverse energy, electroweak gauge bosons, and many energetic final-state particles. The stealth SUSY model yields this signature while conserving R-parity by means of a new hidden sector in which SUSY is approximately conserved. The results of a general search for new physics, with no requirement on missing transverse energy, in events with two photons and four or more hadronic jets are reported. The study is based on a sample of proton-proton collisions at s=7TeV corresponding to 4.96fb-1 of integrated luminosity collected with the CMS detector in 2011. Based on good agreement between the data and the standard model expectation, the data are used to determine model-independent cross-section limits and a limit on the squark mass in the framework of stealth SUSY. With this first study of its kind, squark masses less than 1430 GeV are excluded at the 95% confidence level. © 2012 CERN.
Resumo:
A realistic model describing a black string-like object in an expanding Universe is analyzed in the context of the McVittie's solution of the Einstein field equations. The bulk metric near the brane is provided analogously to previous solutions for black strings. In particular, we show that at least when the Hubble parameter on the brane is positive, a black string-like object seems to play a fundamental role in the braneworld scenario, generalizing the standard black strings in the context of a dynamical brane. © 2013 Elsevier B.V.
Resumo:
Searches are reported for Higgs bosons in the context of either the standard model extended to include a fourth generation of fermions (SM4) with masses of up to 600 GeV or fermiophobic models. For the former, results from three decay modes (ττ, WW, and ZZ) are combined, whilst for the latter the diphoton decay is exploited. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1 fb-1 at 7 TeV and up to 5.3 fb-1 at 8 TeV. The observed results exclude the SM4 Higgs boson in the mass range 110-600 GeV at 99% confidence level (CL), and in the mass range 110-560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110-147 GeV at 95% CL, and in the range 110-133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV is not consistent with either an SM4 or a fermiophobic Higgs boson. © 2013 CERN.
Resumo:
A search for supersymmetry is presented based on events with large missing transverse energy, no isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet. A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity. The sample, corresponding to an integrated luminosity of 19.4fb-1, consists of proton-proton collision data recorded at a center-of-mass energy of 8TeV with the CMS detector at the LHC in 2012. The observed numbers of events are found to be consistent with the standard model expectation, which is evaluated with control samples in data. The results are interpreted in the context of two simplified supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino to an undetected lightest supersymmetric particle and either a bottom or top quark-antiquark pair, characteristic of gluino mediated bottom- or top-squark production. Using the production cross section calculated to next-to-leading-order plus next-to-leading-logarithm accuracy, and in the limit of a massless lightest supersymmetric particle, we exclude gluinos with masses below 1170GeV and 1020GeV for the two scenarios, respectively. © 2013 CERN.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a finite size bag like picture consisting of quarks (2 flavour) and gluons with SU(3) colour singlet restriction on the partition function and the chemical potential μ ≠ 0 with the constraint that the baryon number b = 0 and b = 1 for mesons and baryons, respectively we find a very good agreement with baryon density of states upto 2 GeV and with mesonic ones upto 1.3 GeV. Similar to a hadron-scale string theory our calculation also suggests that beyond 1.3 GeV there should exist exotic mesons.
Resumo:
We analyze the integrability properties of models defined on the symmetric space SU(2)/U(1) in 3 + 1 dimensions, using a recently proposed approach for integrable theories in any dimension. We point out the key ingredients for a theory to possess an infinite number of local conservation laws, and discuss classes of models with such property, We propose a 3 + 1-dimensional, relativistic invariant field theory possessing a toroidal soliton solution carrying a unit of topological charge given by the Hopf map. Construction of the action is guided by the requirement that the energy of static configuration should be scale invariant. The solution is constructed exactly. The model possesses an infinite number of local conserved currents. The method is also applied to the Skyrme-Faddeev model, and integrable submodels are proposed. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
It is shown that the two-loop Kac-Moody algebra is equivalent to a two-variable-loop algebra and a decoupled β-γ system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity of versions of the corresponding ordinary models and decoupled abelian fields.
Resumo:
We establish bounds on the mass scale of effective interactions between fermions and photons using the OPAL data for the reaction e+e-→γγ at √s=91.22 GeV.
Resumo:
We construct a centerless W-infinity type of algebra in terms of a generator of a centerless Virasoro algebra and an abelian spin 1 current. This algebra conventionally emerges in the study of pseudo-differential operators on a circle or alternatively within KP hierarchy with Watanabe's bracket. Construction used here is based on a spherical deformation of the algebra W ∞ of area preserving diffeomorphisms of a 2-manifold. We show that this deformation technique applies to the two-loop WZNW and conformal affine Toda models, establishing henceforth W ∞ invariance of these models.
Resumo:
In this work we address contributions from scalars to (g-2)μ. In order to explain the recently measured deviation by the BNL experiment on (g-2)μ, it is necessary that these scalars are either light or couple strongly with muons. Here we explore this last possibility. We show that a scalar with mass of the order of 102 GeV provides significant contribution to (g-2)μ if the Yukawa coupling is about 10-1. We suggest scenarios where this comes about naturally. ©2001 The American Physical Society.