112 resultados para ETH Zurich


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was originated from the national aircraft industry requirements to reduce the use of coated materials with electroplated chromium or cadmium that produce waste, which is harmful to health or the environment. The selected material is a Custom 465 stainless steel used in the aeronautical field due to its high mechanical strength. Considering the load sustained by the wheel axis of the landing gear, the Custom 465 is tested in axial fatigue. The objective is to compare the behavior of the Custom 465 with plated AISI 4340 steel coated with cadmium. X-ray diffraction method was used to determine the residual stress field induced by shot peening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to characterize the microstructure of the complex phase steel (CP). Using the conventional and colored metallographic analysis with 3% Nital etchant, sodium metabisulfite 10% and LePera. Techniques were applied in this work of optical microscopy, using, besides the lighting in bright field, dark field illumination of the reverse contrast in bright field illumination, the method of polarized light, which generates colorful contrast, providing a complementary identification phases present in the microstructure, and the system by differential interference contrast (DIC). The results obtained by metallography CP indicates that the steel has a microstructure composed of ferrite, retained austenite, bainite and martensite and precipitates arranged in a refined and complex morphology. Besides bright field illumination others' optical microscopy's techniques such as dark field illumination were applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This methodology can assist professionals in the inspection of mechanical and civil structures, to identify and characterize flaws, in order to perform preventative maintenance to ensure the integrity of the structure and decision-making. In order to evaluate the methodology was made modeling a two-story building and several situations were simulated (base-line condition and improper conditions), yielding a database of signs, which were used as input data for the negative selection algorithm. The results obtained by the present method efficiency, robustness and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a system for aircraft structural health monitoring based on artificial immune systems with negative selection. Inspired by a biological process, the principle of discrimination proper/non-proper, identifies and characterizes the signs of structural failure. The main application of this method is to assist in the inspection of aircraft structures, to detect and characterize flaws and decision making in order to avoid disasters. We proposed a model of an aluminum beam to perform the tests of the method. The results obtained by this method are excellent, showing robustness and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the preparation and complementary characterization of a composite formed from the activation of titanium isopropoxide by phosphoric acid and deionized water (TiP). Techniques such as, X-ray diffraction (XRD), Raman, electronic (UV-vis) and Scanning electron microscopies (SEM) were used for characterization of this new composite formed. In the X-ray diffractogram of TIP was observed four intense peaks. A strong absorption was observed in the region 362-445 nm. The scanning electron microscopy of TiP, shows that the prepared material consists mostly of a cluster of spherical particles with diameters ranging from 2.35 to 2.60 mu m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this paper was to select among the attributes surveyed soil, one with better representation to explain the variability of the technological components of sugar cane. The study was conducted at ETH Eldorado Plant in Rio Brilhante, MS, in the agricultural year 2011/2012, in a Oxisol, which was installed a geostatistical grid for data collection of soil and plant, with 80 sampling points, a 80 ha area. From the standpoint of linear and spatial TCH has been explained as a function of volumetric moisture. The volumetric moisture collected at a depth of 0.00 to 0.20 m, which had values between 0,24 to 0,270 m(3) m(-3), resulted in sites with the highest productivity of sugar cane per hectare from 64 to 70 t ha(-1). To aid future studies aimed at precision agriculture, which will use the same attributes as those of the future works, the values of ranges of spatial dependence to be used should be between 81 and 487 meters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to characterize the local structure of Pb1-xCaxTiO3 (PCT) samples, Ti K-edge XANES measurements were performed and showed that Ca incorporation to PbTiO3 structure leads to a decreasing of local distortion of Ti atoms in relation to oxygen atoms at the TiO6 octahedra. Moreover, according to EXAFS measurements, the local structure around Ti atoms exhibits tetragonal symmetry with P4mm space group for samples with x <= 0.475, whereas orthorhombic symmetry with Pbnm space group was observed for x equals to 0.50 and 0.55.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of two compounds, calcium silicate and calcium zirconate was tested in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method. The wires were treated in an atmosphere of O-2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. It was found that the addition of calcium silicate or zirconate promoted higher transition temperatures, up to 116 K for BSCCO with 1wt.% CaSiO3. The critical current densities determined by transport and magnetization measurements were improved in comparison with the wires without any addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal oxidenanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first processproducesdirectly a two-phase material, while the sol-gelpowder never showed second phase below 600 degrees C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 degrees C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O-2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 degrees C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.