150 resultados para Convex Duality
Resumo:
OBJETIVO: Utilizar a ultra-sonografia como método de avaliação do tempo esofágico e sua capacidade de discriminação entre as substâncias não-sólidas ingeridas (água e iogurte). MATERIAIS E MÉTODOS: Foram estudados 22 adultos jovens, sem queixa gástrica e esofágica, de ambos os sexos. Foi utilizado transdutor de ultra-som de 3,5 MHz, convexo, em modo B, colocado na região epigástrica. O intervalo de tempo esofágico foi determinado utilizando-se um cronômetro que foi acionado no momento da movimentação da glote (início da deglutição) e interrompido ao se visualizar a passagem do conteúdo deglutido no esôfago intra-abdominal. RESULTADOS: O tempo médio de trânsito para a água foi de 6,64 ± 1,83 segundos e para o iogurte foi de 8,59 ± 2,70 segundos. A análise estatística comparativa pelo teste t pareado mostrou que as médias apresentaram diferenças significativas entre as substâncias. CONCLUSÃO: O novo método experimental de avaliar o tempo esofágico com ultra-som é capaz de propiciar diferenças significativas do tempo necessário para um determinado alimento (líquido ou pastoso) percorrer o esôfago, esclarecendo as suspeitas clínicas e possibilitando a indicação mais precisa de exames clínicos mais complexos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho teve como objetivo caracterizar a variabilidade espacial de atributos químicos de Latossolos e Argissolos, sob cultivo de cana-de-açúcar em áreas com variações na forma do relevo. No presente estudo utilizou-se duas áreas, sendo uma em Latossolo em pedoforma convexa (158ha) e a outra em Argissolo na pedoforma linear (172ha). Foi coletada amostra de solo em malha na profundidade de 0,00-0,50m, realizando-se análise química de cada ponto amostrado. Os maiores coeficientes de variação e alcances foram observados na pedoforma convexa (Latossolo). Portanto, o Latossolo inserido na pedoforma convexa apresentou maior variabilidade espacial para os atributos químicos em relação ao Argissolo na pedoforma linear. O latossolo inserido pedoforma convexa necessita de maior número de pontos de coleta por apresentar maior variabilidade espacial. Recomenda-se que o intervalo de amostragem seja igual ao alcance da dependência espacial, para associar menor esforço de amostragem com maior representatividade.
Resumo:
O presente trabalho teve por objetivo descrever a morfologia do fruto, da semente e do desenvolvimento pós-seminal de oiti (Licania tomentosa (Benth.) Fritsch.). As sementes e os frutos foram avaliados quanto às dimensões e forma por meio de mensurações com paquímetro digital e observações realizadas em microscópio estereoscópico e microscópio eletrônico de varredura. Os frutos de oiti são drupáceos, elípticos, monospérmicos, carnosos, indeiscentes, com pedúnculos não articulados, epicarpo liso, glabro, de coloração amarela a alaranjada, mesocarpo carnoso, fibroso, coloração amarela a laranja e endocarpo membranáceo, de coloração branca a creme, medindo aproximadamente 6,19cm de comprimento, 3,3cm de largura, 39,5g de massa fresca e 17,3g de massa seca. As sementes são exalbuminosas, de forma elíptica, com tegumento liso, de coloração marrom, de cartáceo a coriáceo, com rafe visível longitudinalmente, micrópila inconspícua e hilo pouco aparente, com cotilédones crassos, elípticos e plano-convexos, de coloração creme a levemente rósea. O embrião é diminuto, reto, central, com eixo embrionário diferenciado em plúmula e eixo hipocótilo-radicular. O comprimento, largura e massa fresca e seca das sementes são cerca de 4,07, 2,18cm, 12,7 e 7,2g, respectivamente. A germinação é criptocotiledonar hipógea, com eófilos alterno-dísticos e lanosos, com estômatos paracíticos e duas glândulas na base do limbo ou, raramente no ápice, na face abaxial da folha.
Resumo:
After an aggregated problem has been solved, it is often desirable to estimate the accuracy loss due to the fact that a simpler problem than the original one has been solved. One way of measuring this loss in accuracy is the difference in objective function values. To get the bounds for this difference, Zipkin (Operations Research 1980;28:406) has assumed, that a simple (knapsack-type) localization of an original optimal solution is known. Since then various extensions of Zipkin's bound have been proposed, but under the same assumption. A method to compute the bounds for variable aggregation for convex problems, based on general localization of the original solution is proposed. For some classes of the original problem it is shown how to construct the localization. Examples are given to illustrate the main constructions and a small numerical study is presented.
Resumo:
We define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.
Resumo:
The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.
Resumo:
The aggregation theory of mathematical programming is used to study decentralization in convex programming models. A two-level organization is considered and a aggregation-disaggregation scheme is applied to such a divisionally organized enterprise. In contrast to the known aggregation techniques, where the decision variables/production planes are aggregated, it is proposed to aggregate resources allocated by the central planning department among the divisions. This approach results in a decomposition procedure, in which the central unit has no optimization problem to solve and should only average local information provided by the divisions.
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Analysis of the taphonomic signatures of a well preserved, silicifled coquina (Pinzonella neotropica assemblage) from the Camaquã outcrop, upper part of the Corumbataí Formation (Late Permian), in the Rio Claro region, state of Sáo Paulo, allowed interpretation of processes involved in its origin as related to high energy events (storms). The coquina occurs as a lenticular body, 2-11 cm thick and extending laterally for about 120 m. Basal contact of the coquina is sharp and erosive. Its upper contact is sharp. The concentration is dominated by pelecypods including the shallow burrowers (Pinzonella neotropica, Jacquesia brasiliensis), intermediate burrower (Pyramus anceps) and semi-infaunal forms (Naiadopsis lamellosus). All these species are suspension feeders. Besides sand-sized or even smaller shell fragments, there occur disarticulated, complete shells which are commonly abraded but do not show any signs of bioerosion or incrustation. In vertical side view, the shells are mainly convex-up, nested or stacked, while in plan-view they show random orientation. Multiple discontinuous grading is visible. These taphonomic signatures suggest that the origin of the skeletal accumulation is related to high energy events (possibly storm flows) in a proximal environment. The amalgamated nature of the Camaquã coquina records several episodes of erosion and deposition.
Resumo:
Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.
Resumo:
Piecewise-Linear Programming (PLP) is an important area of Mathematical Programming and concerns the minimisation of a convex separable piecewise-linear objective function, subject to linear constraints. In this paper a subarea of PLP called Network Piecewise-Linear Programming (NPLP) is explored. The paper presents four specialised algorithms for NPLP: (Strongly Feasible) Primal Simplex, Dual Method, Out-of-Kilter and (Strongly Polynomial) Cost-Scaling and their relative efficiency is studied. A statistically designed experiment is used to perform a computational comparison of the algorithms. The response variable observed in the experiment is the CPU time to solve randomly generated network piecewise-linear problems classified according to problem class (Transportation, Transshipment and Circulation), problem size, extent of capacitation, and number of breakpoints per arc. Results and conclusions on performance of the algorithms are reported.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.