136 resultados para Chemical Synthesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 degrees C for 2h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated. (C) 2007 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solid solution 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most widely investigated relaxor ceramic, because of its high dielectric constant and low sintering temperatures. PMN-PT powders containing single perovskite phase were prepared by using a Timodified columbite precursor obtained by the polymeric precursor method. Such precursor reacts directly with stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. The structural effects of K additive included in the columbite precursor and 0.9PMN-0.1PT powders were also studied. The phase formation at each processing step was verified by XRD analysis, being these results used for the structural refinement by the Rietveld method. It was verified the addition of K in the columbite precursor promotes a slight increasing in the powder crystallinity. There was not a decrease in the amount of perovskite phase PMN-PT for 1mol% of K, and the particle and grain size were reduced, making this additive a powerful tool for grain size control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The CCTO thin film present a cubic structure with lattice parameter a = 7.379 ±0.001 Å free of secondary phases. The observed electrical features of CCTO thin films are highly dependent on the [CaO12], [CaO 4], [CuO11], [CuO11Vx 0] and [TiO5.VO] clusters. The CCTO film capacitor showed a dielectric loss of 0.40 and a dielectric permittivity of 70 at 1 kHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural, microstructural and ferroelectric properties of Pb0.90Ca0.10TiO3 (PCT10) thin films deposited using La0.50Sr0.50CoO3 (LSCO) thin films which serve only as a buffer layer were compared with properties of the thin films grown using a platinum-coated silicon substrate. LSCO and PCT10 thin films were grown using the chemical solution deposition method and heat-treated in an oxygen atmosphere at 700 °C and 650 °C in a tube oven, respectively. X-ray diffraction (XRD) and Raman spectroscopy results showed that PCT10 thin films deposited directly on a platinum-coated silicon substrate exhibit a strong tetragonal character while thin films with the LSCO buffer layer displayed a smaller tetragonal character. Surface morphology observations by atomic force microscopy (AFM) revealed that PCT10 thin films with a LSCO buffer layer had a smoother surface and smaller grain size compared with thin films grown on a platinum-coated silicon substrate. Additionally, the capacitance versus voltage curves and hysteresis loop measurement indicated that the degree of polarization decreased for PCT10 thin films on a LSCO buffer layer compared with PCT10 thin films deposited directly on a platinum-coated silicon substrate. This phenomenon can be described as the smaller shift off-center of Ti atoms along the c-direction 〈001〉 inside the TiO6 octahedron unit due to the reduction of lattice parameters. Remnant polarization (P r ) values are about 30 μC/cm2 and 12 μC/cm2 for PCT10/Pt and PCT10/LSCO thin films, respectively. Results showed that the LSCO buffer layer strongly influenced the structural, microstructural and ferroelectric properties of PCT10 thin films. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)