166 resultados para Cement panel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16° convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheology has the purpose to study the flux and deformation of materials when submitted to some tension or outer mechanical solicitation. In practice, the effective scientific field broached by rheology is restricted only to the study of homogeneous fluids behavior, in which are included eminent liquids, particles suspensions, and emulsions. The viscosity (η) and the yield stress (τ 0) are the two basic values that define the fluids' behavior. The first one is the proportionality constant that relates the shear rate (γ) with the shear stress (τ) applied, while the second indicates the minimal tension for the flowage beginning. The fluids that obey the Newton's relation - Newtonians fluids - display the constant viscosity and the null yield stress. It's the case of diluted suspensions and grate amount of the pure liquids (water, acetone, alcohol, etc.) in which the viscosity is an intrinsic characteristic that depends on temperature and, in a less significant way, pressure. The suspension, titled Cement Paste, is defined as being a mixture of water and cement with, or without, a superplasticizer additive. The cement paste has a non-Newtonian fluid behavior (pseudoplastic), showing a viscosity that varies in accord to the applied shear stress and significant deformations are obtained from a delimited yield stress. In some cases, systems can also manifest the influence of chemical additives used to modify the interactions fluid/particles, besides the introduced modifications by the presence of incorporated air. To the cement paste the rheometric rehearsals were made using the rheometer R/S Brookfield that controls shear stress and shear rate in accord to the rheological model of Herschel-Bulkley that seems to better adapt to this kind of suspension's behavior. This paper shows the results of rheometrical rehearsals on the cement paste that were produced with cements HOLCIM MC-20 RS and CPV-ARI RS with the addition of superplasticizer additives based of napthaline and polycarboxilate, with and without a constant agitation of the mixture. The obtainment of dosages of superplasticizer additives, as well as the water/cement ratio, at the cement at the fluidify rate determination, was done in a total of 12 different mixtures. It's observed that the rheological parameters seem to vary according to the cement type, the superplasticizer type, and the methodology applied at the fluidity rate determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC) activated solely by chemical reaction (control group) or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram) or composite (Artglass) disc. Light curing was carried out using conventional halogen light (XL2500) for 40 s (QTH); light emitting diodes (Ultrablue Is) for 40 s (LED); and Xenon plasma arc (Apollo 95E) for 3 s (PAC). Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height) was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C), the samples (n = 5) were sectioned for hardness (KHN) measurements, taken in a microhardness tester (50 gF load 15 s). The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05). The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm X 5 mm) and covered with a Mylar strip. The tip of the lightcuring unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37°C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (α=0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the lightcuring unit and by its light energy density. © Operative Dentistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (α=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 μm Al2O3 particles; (2) 30 μm silica-modified Al2O3 particles (Cojet Sand); (3) 110 μm silica-modified Al2O3 particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the influence of resin cement insertion methods on the bond strength of a fiber post to root dentin and quality of the cement layer. Forty bovine single-roots (length =16 mm) were randomly allocated into four groups, according to the cement insertion methods (N.=10): Gr1- Lentulo drill #40, Gr2- Centrix syringe, Gr3- Explorer #5, Gr4- fiber post. The root canals were prepared at 12 mm, using preparation bur # 3 of a cylinder quartz-FRC post (Aesthet post-plus, Bisco). The fiber posts were cemented using a multi-step etch-and-rinse adhesive system (All Bond 2®, Bisco) and a dual-cured resin cement (Duolink, Bisco). Each root was cut into seven samples: four samples of 1.8 mm thickness for push-out testing, and three with 0.5 mm for cement layer quality analyzing. One-way ANOVA was used for the push-out test values and the One-Way Kruskal-Wallis (P<0.05) and Dunn (10%) tests for the cement layer analyzes. ANOVA showed that the cement layer quality was affected by the cement insertion methods (P=0.0044): Gr1 (3.8 ± 1.3a), Gr2 (3.2 ± 1.3a), Gr3 (5.2 ± 1.5a,b) and Gr4 (5.2 ± 1.5b) (Dunn test), whereas the bond strength (MPa) was not affected by cement insertion methods: G1 (4.2 ± 1.3), G2 (3.2 ± 1.8), G3 (4.5 ± 0.9), G4 (3.1 ± 1.3). The fiber posts should be cemented with the assistance of the lentulo drill or centrix syringe to promote the best cement layer results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukey's tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: In this study, we evaluated the effect of photopolymerization on Vickers microhardness of dual-polymerized resin cement at three locations when a translucent quartz fiber post was used. Materials and Methods: Single-rooted bovine teeth received quartz fiber post systems (length: 12 mm) using a dual-polymerized resin cement. In Group 1, the posts were cemented but not photopolymerized, and in Group 2, the posts were both cemented and photopolymerized. After cementation, approximately 1.5-mm thick sections were obtained (two cervical, two middle, and two apical) for regional microhardness evaluations. Statistical Analysis: Statistical analyses were performed using the SPSS software (ver. 11.0 for Windows; SPSS, Inc., Chicago, IL, USA). Microhardness (kg/mm 2 ) data were submitted to two-way analysis of variance (two-way ANOVA) and repeated measures with microhardness values as the dependent variable and polymerization status (two levels: with and without) and root region (three levels: cervical, middle, and apical) as independent variables. Multiple comparisons were made using Dunnett's T3 post-hoc test. P values of <0.05 were considered to indicate statistical significance in all tests. Results: Photopolymerization did not significantly change the microhardness values when compared with no photopolymerization. Microhardness values also showed no significant difference between the three regions in the root canals in both groups. Conclusions: The mode of polymerization of the cement tested in combination with the translucent quartz fiber post system did not affect the microhardness of the cement at the cervical, middle, or apical regions of the root.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P <.05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. Copyright © 2012 American Association of Endodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.