242 resultados para titanium implants


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are hoped to be used much more for applications as implant materials in the medical and dental fields because of their basic properties, such as biocompatibility, corrosion resistance and specific strength compared with other metallic implant materials. Thus, the Ti-6Al-7Nb alloy that has recently been developed for biomedical use, that is, primarily developed for orthopaedic use, is to be studied in this paper, for application in dental implants. The biocompatibility test in vivo was carried out in dogs and the osseointegration was verified through histological analysis of the samples of the Ti-6Al-7Nb alloy with and without hydroxyapatite coating that were inserted in the alveoli. Within the controlled conditions the samples did not show any toxic effects on the cells. (C) 2001 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare by qualitative histology the efficacy of rigid internal fixation with titanium system and the Lacto Sorb® system in mandibular fractures in rabbits. Thirty male adult rabbits Oryctolagus cuniculus were used. Unilateral mandibular osteotomies were performed between the canine and first premolar. The animals were divided into two groups: for Group I - rigid internal fixation was performed with titanium system 1.5 mm (Synthes, Oberdorf, Switzerland), with two screws of 6 mm (bicortical) on each side of the osteotomy. For Group II-rigid internal fixation was performed with PLLA/PGA system 1.5 mm (Lacto Sorb®, WLorenz, Jacksonville, FL, USA). The histological analysis evaluated the presence of inflammatory reaction, degree of bone healing and degree of resorption of the Lacto Sorb® screws. The results of both fixation systems were similar, only with a small difference after 15 and 30 days. In Group I a faster bony healing was noted. But after 60 days, bony healing was similar in both groups. It is concluded that both PLLA/PGA and titanium plates and screws provide sufficient strength to permit mandibular bone healing. The resorption process of PLLA/PGA osteosynthesis material did not cause acute or chronic inflammatory reaction or foreign body reaction during the studied period. © 2004 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Alterations in implant surfaces can affect periimplant bone formation and shorten the healing time. The goal of the present study was a comparative scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and biomechanical evaluation of implants subjected to different surface treatments. Materials and Methods: Four implant surfaces were analyzed in the present study: machined commercial implants (TU); porous-surfaced commercial implants blasted with Al2O3 microspheres and acid-etched (TJA); laser beam-irradiated experimental implants (Laser) and laser beam-irradiated experimental implants with hydroxyapatite coating (HA). One sample for each surface underwent pre-surgery SEM/EDS analysis. Thirty-two implants (8 for each surface treatment) were then inserted into the tibia of 4 rabbits. After 8 weeks, the animals were euthanized and the implants retrieved by reverse torque and processed for post-surgery SEM/EDS analysis. Results: HA implants presented higher removal torque values when compared to Laser, TJA and TU groups. Post-surgery SEM micrographs clearly showed bone formation on all the examined surfaces; however, in the TU group bone covered only some areas of the implant surface, while in TJA, Laser and HA groups the entire implant surfaces were overlaid by newly formed bone. EDS analysis supported the results obtained by SEM and removal torque, showing that concentration of Ca and P increased from TU to TJA, Laser and HA implants. Conclusions: Implants with surfaces modified by laser beam with or without apatite coating showed more promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shellac is a natural resin used for the preservation of fruits, bones and as a coating on drugs. The hydroxyapatite (HA), which is naturally found in human bones, is used as filler to substitute amputated bone or as a coating for prosthetics, promoting bone growth in implants of prostheses. The objective of this work is to immobilize HA from an alcoholic solution of shellac on plates of titanium, niobium and AISI 316L steel using the simple dip-coating method. The corrosion resistance of the uncoated films is compared with ones coated with shellac and shellac plus HA. The deterioration of the film composed of shellac with hydroxyapatite in saline solution follows the ascending order: AISI 316L steel, titanium, niobium. The elemental analysis of the shellac showed that it mainly consists of the elements C, H, N and O. We used the FT-IR spectrum to characterize the shellac and HA. ©The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic biomaterials are used to reinforce or to restore the form and function of hard tissues. Implants and prosthesis are used to replace shoulders, knees, hips and teeth. When these materials are inserted in bone several biological reactions happen. This process can be associated to surface properties (topography, roughness and surface energy). In this work, the influence of biomimetic surface treatment in the osseointegration of Ti-30Ta dental implants was evaluated. Ingots were obtained from titanium and tantalum by using an arc-melting furnace. They were submitted to heat treatment at 1,100°C for 1 h, cooled in water and cold worked by swaging. Then, screw-shaped implants (2.0 mm diameter by 2.5 mm length) were manufactured and they were implanted in a rat's femur. Animals were divided into two groups: untreated (control group) and treated (biomimetic surface treatment). They were sacrificed 30 days after implantation. For histological analysis, implants with surrounding tissue were removed and immersed in formaldehyde. Samples were embedded in polymethyl methacrylate and after polymerization, cut with a saw, polished and mounted on glass slides. The results obtained suggest that biomimetic surface treatment was able to promote an increase osseointegration on the surface of dental implants. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been reported that titanium-zirconium alloy with 13-17% zirconium (TiZr1317) implants show higher biomechanical stability and bone area percentage relative to commercially pure titanium (cpTi) grade 4 fixtures. Purpose: This study aimed to determine whether the higher stability for TiZr1317 implants is associated with higher mechanical properties of remodeling bone in the areas around the implants. Materials and Methods: This study utilized 36 implants (n=18: TiZr1317, n=18: cpTi), which were placed in the healed ridges of the mandibular premolar and first molar of 12 mini pigs (n=3 implants/animal). After 4 weeks in vivo, the samples were retrieved, and resin-embedded histologic sections of approximately 100μm in thickness were prepared. In order to determine the nanomechanical properties, nanoindentation (n=30 tests/specimen) was performed on the bone tissue of the sections under wet conditions with maximum load of 300μN (loading rate: 60μN/s). Results: The mean (±standard deviation) elastic modulus (E) and hardness (H) for the TiZr1317 group were 2.73±0.50GPa and 0.116±0.017GPa, respectively. For the cpTi group, values were 2.68±0.51GPa and 0.110±0.017GPa for E and H, respectively. Although slightly higher mechanical properties values were observed for the TiZr1317 implants relative to the cpTi for both elastic modulus and hardness, these differences were not significant (E=p>0.75; H=p>0.59). Conclusions: The titanium-zirconium alloy used in this study presented similar degrees of nanomechanical properties to that of the cpTi implants. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium is a metallic element known by several attractive characteristics, such as biocompatibility, excellent corrosion resistance and high mechanical resistance. It is widely used in Dentistry, with high success rates, providing a favorable biological response when in contact with live tissues. Therefore, the objective of this study was to describe the different uses of titanium in Dentistry, reviewing its historical development and discoursing about its state of art and future perspective of its utilization. A search in the MEDLINE/PubMed database was performed using the terms 'titanium', 'dentistry' and 'implants'. The title and abstract of articles were read, and after this first screening 20 articles were selected and their full-texts were downloaded. Additional text books and manual search of reference lists within selected articles were included. Correlated literature showed that titanium is the most used metal in Implantology for manufacturing osseointegrated implants and their systems, with a totally consolidated utilization. Moreover, titanium can be also employed in prosthodontics to obtain frameworks. However, problems related to its machining, casting, welding and ceramic application for dental prosthesis are still limiting its use. In Endodontics, titanium has been used in association to nickel for manufacturing rotatory instruments, providing a higher resistance to deformation. However, although the different possibilities of using titanium in modern Dentistry, its use for prostheses frameworks still needs technological improvements in order to surpass its limitations. © 2012 Indian Prosthodontic Society.