423 resultados para polymeric precursor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium stannate titanate Sr(Sn, Ti)O3 is a solid solution between strontium stannate (SrSnO3) and strontium titanate (SrTiO3). In the present study, it was synthesized at low temperature by the polymeric precursor method, derived from the Pechini process. The powders were calcined in oxygen atmosphere in order to eliminate organic matter and to decrease the amount of SrCO3 formed during the synthesis. The powders were annealed at different temperatures to crystallize the samples into perovskites-type structures. All the compositions were studied by thermogravimetry (TG) and differential thermal analysis (DTA), infrared spectroscopy (IR) and X-ray diffraction (XRD). The lattice former, Ti4+ and Sn4+, had a meaningful influence in the mass loss, without changing the profile of the TG curves. On the other hand, DTA curves were strongly modified with the Ti4+:Sn4+ proportion in the system indicating that intermediate compounds may be formed during the synthesis being eliminated at different temperature ranges, while SrCO3 elimination occurs at higher temperature as shown by XRD and IR spectra. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, modifications of alumina surface with of alkaline earth metal oxides were studied, using the polymeric precursor method. The modified compounds were characterized by X-ray diffraction, nitrogen adsorption-desorption and scanning electron microscopy. The catalytical properties of these new catalysts were evaluated for the transesterification reaction of babassu oil. It is observed that the transesterification reaction of babassu oil with methanol was successfully carried out using the modified alumina samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er3+-doped polycrystalline Y2O3 with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er3+ doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er3+ concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f-f transitions of Er3+ ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferroelectric properties and leakage current mechanisms of preferred oriented Bi3.25La0.75 Ti3O12 (BLT) thin films deposited on La0.5Sr0.5CoO3 (LSCO) by the polymeric precursor method were investigated. Atomic force microscopy indicates that the deposited films exhibit a dense microstructure with a rather smooth surface morphology. The improved ferroelectric and leakage current characteristics can be ascribed to the plate-like grains of the BLT films. © 2006 Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study proposes to synthesize (1-x)PMN-xPT powders, where 0.10 < x < 0.45, using the T-modified columbite route. This methodology consists in the preparation of the MNT columbite precursor via the polymeric precursor method, followed by the solid state reaction with PbO to get the PMN-PT powders. It was verified that from 15 mol% of Ti, the MNT presents the coexistence of two main phases with different crystal symmetry: Rutile and Columbite. However, the synthesis of (1-x)PMN-xPT powders is not affected by this event. A detailed study of structural effects in MNT and PMN-PT powders as function of Ti content was made using the Rietveld method. It was also demonstrated that powders possess high chemical and microstructural homogeneity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of magnesium addition on the phase formation and electric properties of LiNbO3 powder prepared from polymeric precursor was analyzed. It was shown that the unit-cell volume of the rhombohedral phase decreased with increasing magnesium concentration. Small amounts of secondary phases were observed in LiNbO3 powder doped with 5 and 10 mol% Mg+2. These results indicated that the Mg+2 ion was substituted for niobium ion in the rhombohedral phase. The addition of Mg+2 promotes densification of LiNbO3 ceramics. It was noticed that the increase in additive concentration leads to a decrease of electric properties, K-p and d(33). This is due to formation of LiNb3O8 and MgNb2O6 phases at the grain boundaries. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pure and lanthanum-doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. The spin-coated films were specular and crack-free and crystalline after annealing at 700 degreesC for 2 h. Crystallinity and morphological evaluation were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystalline layer route present a dense microstructure with spherical grains. Films obtained using the intermediate-amorphous layer, present elongated grains around 250 nm in size. The dielectric and ferroelectric properties of the lanthanum-doped Bi4Ti3O12 films are strongly affected by the crystallization route. The hysteresis loops are fully saturated with a remnant polarization and drive voltage of the films, heat-treated by the intermediate-crystalline (P-r = 20.2 muC/cm(2) and V = 1.35 V) and for the film heat-treated by amorphous route (P-r = 22.4 muC/cm(2) and V = 2.99 V). (C) 2004 Elsevier B.V. All rights reserved.