181 resultados para photorefractive solitons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the numerical solution of the nonlinear Schrodinger equation and a variational method it is shown that (3 + 1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coefficient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Employing a time dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ''vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ''vacuum solitons'' by the dressing transformation procedure.