142 resultados para pharmaceuticals in wastewater
Resumo:
First, the effect of ferrioxalate or iron nitrate on the photo-Fenton degradation efficiency of the pharmaceuticals lincomycin (LCM) and diazepam (DZP) was evaluated. The degradation of both pharmaceuticals was improved in the presence of ferrioxalate in relation to Fe(NO(3)), either under black-light or solar irradiation. The degradation of the pharmaceuticals was then evaluated when present in an effluent from sewage treatment plant (STP) under black-light irradiation. Pharmaceuticals oxidation was not influenced by the matrix, since very similar results were obtained when compared to the experiments carried out in distilled water. However, DOC removal was slightly affected by the matrix, due probably to the generation of recalcitrant intermediates during effluent photodegradation and to the high content of inorganic carbon of STP effluent. Even so, high DOC removal percentages were achieved, 65% for lincomycin and 80% for diazepam after 60 min irradiation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A flow-injection (FI) spectrophotometric procedure exploiting merging zones is proposed for the determination of azithromycin in pharmaceutical formulations. The method is based on the reaction of azithromycin with tetrachloro-phenzoquinone (p-chloranil) accelerated by hydrogen peroxide and conducted in a methanol medium, producing a purple-red color compound (lambda(max) = 540 nm). The FI system and the experimental conditions were optimized using a multivariate method. Beer's law is obeyed in a concentration range of 50 - 1600 mu g mL(-1) with an excellent correlation coefficient (r = 0.9998). The detection limit and the quantification limit were 6.6 and 22.1 mu g mL(-1), respectively. No interference was observed from the common excipients, and the recoveries were within 98.6 to 100.4%. The procedure was applied to the determination of azithromycin in pharmaceuticals with a high sampling rate (65 samples h(-1)). The results obtained by the proposed method were in good agreement with those obtained by the comparative method at 95% confidence level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Um biodigestor anaeróbio de duas fases foi utilizado para se analisar a produção de metano com diferentes cargas de entrada de manipueira. A fase acidogênica foi realizada em processo de batelada e a metanogênica em biodigestor anaeróbio de fluxo ascendente e leito fixo com alimentação contínua. As cargas orgânicas de entrada variaram de 0,33 a 8,48 gDQO (Demanda Química de Oxigênio)/L.dia. A maior porcentagem de metano encontrada foi de 80,9%, com carga orgânica de 0,33g e a menor, 56,8%, obtida com 8,49gDQO/L.d. A maior taxa de redução de DQO foi de 88,89%, obtida com carga orgânica de 2,25g e a menor, 54,95%, com 8,48gDQO/L.d. Analisando-se os dados apresentados verificou-se que a biodigestão anaeróbia pode ser conduzida, pelo menos, de duas maneiras, ou seja, para produção de energia (metano) ou para redução de carga orgânica. A carga orgânica de entrada deve ser calculada em função do objetivo a ser alcançado com a biodigestão anaeróbia.
Resumo:
Um dos resíduos gerados no processamento da mandioca (Manihot esculenta) é a manipueira, passível de tratamento por biodigestão anaeróbia. Este trabalho objetivou estudar o processo de partida de um biodigestor tipo plug-flow, tratando manipueira de duas maneiras: diminuindo-se gradativamente o tempo de retenção hidráulica (TRH) até se chegar ao tempo pré-estabelecido, quatro dias; ou mantendo-se o TRH fixo em quatro dias e aumentando-se gradativamente a concentração do afluente. O biodigestor, com capacidade 1980 mL, foi mantido a temperatura de 32ºC ± 1. Empregou-se como substrato manipueira e ajustou-se o pH entre 5,5 e 6,0. A primeira etapa foi caracterizada empregando-se TRH de 16,6; 13,6; 11,6 e 9,6 dias e 3,1; 2,0; 2,3 e 2,9 g DQO L-1 d-1 de carga orgânica, respectivamente. Na segunda etapa manteve-se TRH fixo, 4 dias, porém cargas orgânicas de 0,48, 0,86, 1,65 e 2,46 g DQO L-1 d-1. Determinaram-se no afluente e efluente, sólidos totais (ST) e sólidos voláteis (SV), demanda química de oxigênio (DQO), alcalinidade e acidez volátil. Na primeira etapa, melhores resultados foram observados trabalhando com TRH 9,6 dias e carga orgânica 2,9 g DQO L-1 d-1, quando houve redução de DQO, ST e SV de 60%, 44% e 60%, respectivamente. Na segunda etapa o TRH de 4 dias apresentou melhores resultados empregando-se carga orgânica de 0,86 g DQO L-1 d-1, houve redução de 71%, 58% e 79% de DQO, ST e SV, respectivamente. A partida do biodigestor plug-flow tratando manipueira, pode ser realizada tanto diminuindo-se o TRH, quanto mantendo-o fixo e aumentado-se a concentração do afluente.
Resumo:
A flow-injection spectrophotometric procedure is proposed for methyldopa determination in pharmaceutical preparations. The determination is based on formation of a yellow product (measured at 410 nm) after complexation of methyldopa with molybdate. Under optimal conditions, Beer's law is obeyed in a concentration range of 50-200 mg l(-1) methyldopa. Typical correlation between absorbance and analyte concentration was 0.9999. Usual excipients used as additives in pharmaceuticals do not interfere with the proposed method. The analytical frequency was 210 h(-1) and the relative standard deviation (R.S.D.) was <= 2% for sample solution containing 150 mg l(-1) methyldopa (n = 11). The analytical results obtained in commercial formulations by applying the proposed FIA method were in good agreement with labeled values and those obtained by the Brazilian Pharmacopoeia procedure at 95% confidence level. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this report an analytical method to determine furosemide by using diffuse reflectance spectroscopy is presented. This study shows that this technique can give quantitative results using spot test analysis, particularly in the case of pharmaceuticals containing furosemide. The color spot test could be obtained by reaction between furosemide with p-dimethylaminocinnamaldehyde, in acid medium. This reaction produced a stable complex on filter paper after heating to 80degreesC for 5 min. All reflectance measurements were carried out at 585 nm and the linear range was from 7.56 x 10(-3) to 6.05 x 10(-2) mol l(-1), with a correlation coefficient of 0.999. The limit of detection was estimated to be 2.49 x 10(-3) mol l(-1) (R.S.D. = 1.7%) and the effect of common excipients on the reflectance measurements was evaluated. The method was applied to determine furosemide in commercial brands of pharmaceuticals. The results obtained by the proposed method were favorably compared with those of the official method, showing for the first time ever that quantitative spot test analysis by diffuse reflectance could be successfully used to determine furosemide in tablets. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A sensitive method is described for the determination of cefaclor by cathodic stripping voltammetry at the hanging mercury drop electrode. cefaclor is accumulated at the electrode surface as a mercury salt, which is reduced at -0.67 V. The optimum accumulation potential and accumulation time were +0.15 V and up to 180 s, respectively. Linear calibration graphs were obtained between 3.9 mu g.L-1 to 39 mu g.L-1 and the limit of determination was evaluated to be 1.9 mu g.L-1. The method was applied successfully to the determination of cefaclor in pharmaceutical formulations.
Resumo:
The stabilization of swine wastewaters from swine confined housing by the combination of a upflow anaerobic sludge blanket (UASB) reactor and waste stabilization ponds is a viable alternative to minimize the environmental impact caused by inadequate disposal of swine wastewaters. In the present study, the polluting load of pre-decanted swine wastewater treated with a series of two 0.705 m(3) UASB reactors and then in parallel in aerated and non-aerated stabilization tanks was investigated from January to July, 2000. Physicochemical and microbiological analyses were made adopting standard methods (Standard Methods for Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC, 1995). COD values decreased as the wastewater ran through the integrated biodigestion system dropping from about 3492 +/- 511-4094 mg l(-1) +/- 481 to 124 +/- 52-490 mg l(-1) +/- 230, while nitrate and nitrite levels increased in stabilization tanks, ranging respectively from 4 +/- 0 to 20 mg l(-1) +/- 3 and 3 +/- 1 to 11 mg l(-1) +/- 24. Although the removal of Escherichia coli was more than 97% +/- 6, the effluents of the treatment system still contained unacceptable levels of E. coli (1.6 x 10(3)-1.2 x 10(6) 100 ml(-1)) according to WHO guidelines for use of wastewater in agriculture and aquaculture. These results indicate the necessity of changes on operational characteristics of the treatment system such as an increase of the hydraulic retention time in UASB reactors or in stabilization tanks. (C) 2003 Published by Elsevier Ltd.
Resumo:
The cassava processing industry generates wastewater named manipueira with a high organic content. Although considered a pollutant, manipueira can be used as substrate for fermentative processes including the cultivation of Geotrichum fragrans. This aerobic microorganism isolated from cassava wastewater has cyanide resistant respiration. Under cassava wastewater cultivation, G. fragrans produced fruit aroma volatile compounds. This study evaluated volatile compounds produced by G. fragrans in cassava liquid waste. The waste had a sugar composition composed of dextrin (2.6%), maltose (1.4%), sucrose (32.1%), glucose (38.3%), and fructose (25.6%). The average value of total sugars was 58.2 g l(-1), composed of 38.0 g l(-1) reducing and 20.2 g l(-1) non-reducing sugars. The chemical oxygen demand (COD) average value was 60 000 mg l(-1). G. fragrans used sugars (fructose and glucose) for energy generation reducing the COD value of the cassava wastewater by 40%. Biomass production of G. fragrans cultivated for 12 h in natural cassava liquid waste was 12.8 g l(-)1. The volatile compounds identified in the cassava liquid waste after 72 h cultivation were: 1-butanol, 3-methyl 1-butanol (isoamylic alcohol), 2-methyl 1-butanol, 1-3 butanodiol and phenylethanol; ethyl acetate, ethyl propionate, 2-methyl ethyl propionate and 2-methyl propanoic. The effect of substrate supplementation with glucose (50 g l(-1)), fructose (50 g l(-1)) and aqueous yeast extract (200 ml l(-1)) did not affect the qualitative and quantitative profiles of volatile compounds. These results indicate that the carbon (C) source utilized by microorganism was glucose or fructose, while nitrogen (N) supplementation was not necessary because the agent did not exhaust all the nitrogen of the wastewater. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.
Resumo:
The red Fe2+-phenanthroline complex is the basis of a classical spectrophotometric method for determination of iron. Due to the toxicity of this complexing agent, direct disposal of the wastewaters generated in analytical laboratories is not environmentally safe. This work evaluates the use of the solar photo-Fenton process for the treatment of laboratory wastewaters containing phenanthroline. Firstly, the degradation of phenanthroline in water was evaluated at two concentration levels (0.1 and 0.01%, w/v) and the efficiencies of degradation using ferrioxalate (FeOx) and ferric nitrate were compared. The 0.01% w/v solution presented much higher mineralization, achieving 82% after 30 min of solar irradiation with both iron sources. The solar photo-Fenton treatment of laboratory wastewater containing, in addition to phenanthroline, other organic compounds such as herbicides and 4-chlorophenol, equivalent to 4500 mg L-1 total organic carbon (TOC) resulted in total degradation of phenanthroline and 25% TOC removal after 150 min, in the presence of either FeOx or ferric nitrate. A ratio of 1: 10 dilution of the residue increased mineralization in the presence of ferrioxalate, achieving 38% TOC removal after 120 min, while use of ferric nitrate resulted in only 6% mineralization over the same period. (c) 2007 Elsevier B.V. All rights reserved.