114 resultados para optical constants measurements
Resumo:
Magneto-optical rotation was measured at room temperature for glasses containing Bi2O3-CdO-GeO2 (BCG), and Bi2O3-PbO-GeO2-B2O3 (BPGP). A pulsed magnetic field between 50 and 80 KG was used to measure Faraday rotation at 632.8 nm as a function of the concentration of Bi and Cd for BCG and Bi and Pb for BPGB. Verdet constant as high as 0.162 min G-1 cm-1 at 632.8 nm for the BPGB sample with the highest concentrations of Bi and Cd was found. Verdet constant increases linearly with the heavy-metal concentration for the BPGB whereas it reaches some saturation for the BCG system. Measurements of the magneto-optical rotation at other wavelengths in the visible and the refractive index at 632.8 nm are also reported. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Strontium bismuth tantalate thin films were prepared on several substrates (platinized silicon (Pt/Ti/SiO 2 /Si), n -type (100)-oriented and p -type (111)-oriented silicon wafers, and fused silica) by the solution deposition method. The resin was obtained by the polymeric precursor method, based on the Pechini process, using strontium carbonate, bismuth oxide, and tantalum ethoxide as starting reagents. Characterizations by XRD and SEM were performed for structural and microstructural evaluations. The electrical measurements, carried on the MFM configuration, showed P r values of 6.24 μC/cm 2 and 31.5 kV/cm for the film annealed at 800 C. The film deposited onto fused silica and treated at 700 C presented around 80% of transmittance. © 2002 Taylor & Francis.
Resumo:
The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.
Resumo:
Nonlinear absorption measurements were performed on fluorophosphate glasses with high concentration of tungsten oxide. Large two-photon absorption coefficients, α2, were determined at 660 nm using nanosecond laser pulses. It was observed that α2 increases for increasing tungsten oxide concentrations and therefore the optical limiting performance of this new glass composition can be controlled.
Resumo:
A brief overview of optical monitoring for vacuum and wet bench film deposition processes is presented. Interferometric and polarimetric measurements are combined with regard to simultaneous real-time monitoring of refractive index and physical thickness. Monitor stability and accuracy are verified with transparent oil standards. This double optical technique is applied to dip coating with a multi-component Zirconyl Chloride aqueous solution, whose time varying refractive index and physical thickness curves indicate significant sensitivity to changes of film flow properties during the process.
Resumo:
The purpose of this article was to compare the mean value of optical density of four porcelains commonly used for fabrication of inlay/ onlay prostheses using direct digital radiograph. The sample consisted of 20 2-mm thick porcelain specimens (measured by digital pachymeter): Empress (Ivoclair), Simbios (Degussa), Vita Omega 900 and Vitadur Alpha (Vita Zahnfabrik). The values of optical density of the specimens were expressed in millimeters aluminum equivalent (mm eq Al). The samples were X-rayed using two charge coupled devices (CCD) - RVG (Trophy) - Visualix (Gendex) and a phosphor plate system - Digora (Soredex). The optical density reading was performed with Image Tool 1.28 in a total of 110 measurements. Statistical analysis showed that there were statistically significant differences in all materials studied (p < 0.05) regardless of the radiographic system used. The highest optical density value was found for Omega 900 (1.8988 mmeqAl - Visualix - Gendex) and the lowest for Vitadur Alpha (0.8647 - Visualix - Gendex). Thus, the material presenting the highest degree of optical density was Omega 900, Empress and Simbios presented intermediate optical density values, Vitadur Alpha presented the lowest value, and the optical density of porcelains was not influenced by the digital radiography systems.
Resumo:
The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.
Resumo:
We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.
Resumo:
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.
Resumo:
Glasses in the ternary system (70 - x)NaPO3-30WO 3-xBi2O3, with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 C for 0 ≤ x ≤ 15 mol % and decreases to 417 C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi 2O3 formation of BiO6 clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n 2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n0 ≤ 1.88, n2 ≥ 10-15 cm 2/W and NL absorption coefficient, α2 ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared. © 2012 American Chemical Society.
Resumo:
X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.
Resumo:
In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.