108 resultados para Two-point boundary value problems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have studied the physical content of the following models: Maxwell, Proca, Self-Dual and Maxwell-Chern-Simons. One method we have used is the decomposition in the so called helicity variables, which can be done in the Lagrangian formalism. It leads to the correct counting of degrees of freedom without choosing a gauge condition. The method separates the propagating modes from the non-propagating ones. The Hamiltonian of the MCS and the AD is calculated. The second method used here is the analysis of the sign of the imaginary part of the residues of the two-point amplitude of the theory, showing that the models analyzed are free of ghosts. We also carry the dimensional reduction of the Maxwell-Chern-Simons and Self-Dual models from D = 2+1 to D = 1 + 1 dimensions. Next, we show that the dimensional reduction of those equivalent models also leads to equivalent models in D=1+1. Even more interesting is the fact, demonstrated here, that those reduced models can also be connected via gauge embedding. So the gauge embedding of the Self-Dual model into the Maxwell-Chern-Simons theory is preserved by the dimensional reduction
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Two of the major problems caused by construction activity are the production of construction and demolition waste (CDW) and the exploitation of mineral resources, causing big impacts on the environment. Therefore, the recycling has been shown as an alternative to mitigate the harmful effects of waste on the urban environment and prevent the exploitation of new raw materials. This course work aims to study the behavior of recycled aggregates from Vale do Paraíba in concrete and mortar. Initially, it presents the definitions of recycled aggregates according to CONAMA Resolution No. 307/2002, the aggregate settings for concrete and mortar (such as the grain size, its origin and density, and the characterization parameters according to ABNT), and the definition of ACI method of concrete mix design. Afterwards, it presents the characterization of materials separated by assays. After that, it shows the theoretical concrete proportioning applying the ACI method and experimental concrete proportioning. Then, the analysis of results is performed to finally conclude that the materials provided can't be used to replace natural aggregates because they cannot have the same performance. With the studies, it could be observed that the recycled aggregate presents a great complexity and diversity in origin, therefore the form how the material should be handled requires great care
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent 1 is observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)