91 resultados para Torques magnéticos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomagnetic techniques use different magnetic field detectors to measure parameters of the human physiology. Those techniques present the advantage of being noninvasive and radiation free. Among them we can show up the Superconducting Quantum Interference Device (SQUID), the Current Alternate Biosusceptometry (ACB) and, more recently, the employment of anisotropic magnetoresistive sensors. Those magnetic sensors have a low cost and good sensitivity to measure different physiological parameters using magnetic markers. The biomagnetic techniques have being used successfully through study on the characteristics of the gastrointestinal tract. Recent research, the magnetoresistors were used to evaluate the transit time and localization of magnetic sources in different parts of the gastrointestinal tract. The objective of this work is the characterization, with in vitro tests, of a biomagnetic instrumentation using two 3-axis magnetoresistors arranged in a gradiometric coplanar setup to evaluate esophageal transit time, analyze and compare the results of experimental signals and the magnetic theory, as well as evaluate the instrumentation gain with use of tri-axial sensor front to the mono-axial sensor. The instrumentation is composed by two three-axis sensing magnetometers, precision power supply and amplifier electronic circuits. The sensors fixed in a coplanar setup were separate by distance of 18 cm. The sensitivity tests had been carried through using a cylindrical magnet (ø = 4 mm and h = 4 mm) of neodymium-iron-boron (grid 35). The tests were done moving the permanent magnet on the sensors parallel axis, simulating the food transit in... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of gastrointestinal tract (GIT) functions is necessary due to the increasing number of pathologies associated with it. Directly influencing the quality of life, the gastrointestinal tract provides a number of parameters that, when analyzed, allow us to describe its dysfunctions. Thus, many techniques can be combined to obtain these properties related to the GIT. However, these techniques are often invasive, require surgery, catheter insertion, or to build a temporal model of these functions, require the sacrifice of animals in a series of data collection. The technique used in this study has the advantage of having a low operating cost, being free of ionizing radiation, non-invasive and is known as biosusceptometry AC (BAC), used to evaluate the properties of the GI tract by monitoring the position and concentration of materials magnetically marked. The sensor consists of two pairs of coils, one reference and one for detection. A fixed base line separates the sensing and reference coils, and also functions as support for the instrumentation. It is also important to note that the detection coils are arranged in a first order (subtraction) gradiometric way. The objective of this study was to analyze the effects of gastrectomy in gastric emptying and gastrointestinal transit time of solid food in rats using a BAC system associated with magnetic markers. To realize this study was constructed a dedicated BAC sensor, built to analyze these GIT properties. Data acquisition was obtained by aligning the magnetic sensor with the stomach and colon of the animal at pre-determined intervals. Thus, when approaching the magnetic material of the sensor, the balance created between the two sides of the sensor is broken. This imbalance can be measured, digitized and acquired. Tracer was used as a ration magnetically marked with ferrite... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI), which is studied since 1938, is a technique used in medicine to produce high quality images from inside the human body. These images are produced non-invasively and without ionizing radiation. In addition, MRI is an extremely flexible technique, with which it is possible to produce images with different contrasts that provide different information about the anatomy, structure and function of the human body, and it is therefore one of the techniques preferred by radiologists. The phenomenon of MRI is based on the interaction of magnetic fields with the nuclear spins of the scanned sample. In this work a detailed study of the technique of magnetic resonance imaging is presented, with a description of the main features of the images produced by the technique and an analysis of its application to the fields of applications Neurology and Neuroscience

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gastrointestinal tract is the main route of nutrients absorption and drugs delivery. Is important to know the parameters related to the tract, like gastric emptying and gastrointestinal transit, in order to better understand the behavior of different kind of meals or drugs passing through the GIT. Many techniques are used to study these parameters, such as manometry, scintigraphy, phenol red, activated charcoal and carbon-13 reading. However, these methods use radiation, are invasive and require animal sacrifice. As an alternative proposal, the Alternate Current Biosusceptometry (ACB), a magnetic technique, has proved to be effective for these studies with small animals, in a noninvasive way, low cost, radiation free and avoiding the animal death. Associating the ACB to magnetic micro or nanoparticles used as tracers, it is possible to observe the meal behavior inside of the GIT. Focusing meanly on liquid meals digestion, this paper had the objective to evaluate the efficiency of the ACB technique in gastric emptying and gastrointestinal transit evaluation of liquid meals in rats. To perform the experiments, magnetic nanoparticles (ferrite, MgFe2O4) were used on a 1,5 ml solution introduced by gavage on similar weight and age rats. The sensor made by 2 pairs of coils, capable of generating and detecting magnetic fields, creates a field on the interest place and when this field is in contact with the marked meal, it changes, resulting on a variation of the measured voltage. The voltage variation is analyzed and is obtained a particle concentration on the interest region. The results showed that is possible to apply the ACB technique on the GIT evaluation of liquid particles digestion, gastric emptying and meal cecum arrival time curves were obtained and from that, is possible to observe a pattern of gastrointestinal transit. Both mean process time values were acquired, proving the technique capability of ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ObjectiveTo study bone healing at implants installed with different insertion torques.Material and methodsIn six Labrador dogs, all mandibular premolars and first molars were extracted. After 4months of healing, flaps were elevated, and two implant sites were prepared at each side of the mandible. In the right side of the mandible, the distal sites were prepared conventionally, while the mesial sites were over-prepared by 0.2mm. As a consequence, a final insertion torque of similar to 30Ncm at the distal and a minimal insertion torque close to 0Ncm at the mesial sites were obtained. In the left sides of the mandible, however, the recipient sites were underprepared by 0.3mm resulting in an insertion torque of 70Ncm at both implants. Cover screws were applied, and flaps sutured to fully submerge the experimental sites. After 4months, the animals were sacrificed and ground sections obtained for histological evaluation.ResultsThe mineralized bone-to-implant contact was in the range of 55.2-62.1%, displaying the highest value at implants with similar to 30Ncm insertion torque and the lowest value at the implant sites with close to 0Ncm insertion torque. No statistically significant differences were revealed. Bone density was in the range of 43.4-54.9%, yielding the highest value at implants with 70Ncm insertion torque and the lowest at the implant sites with close to 0Ncm insertion torque. The difference between the sites of similar to 30Ncm and the corresponding 70Ncm insertion torque reached statistical significance.ConclusionsSimilar amounts of osseointegration were obtained irrespective of the insertion torque applied. Moreover, implants installed in sites with close to 0Ncm insertion torque may properly osseointegrate as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a finite body of mass m (C1) with moments of inertia A, B and C. This body orbits another one of mass much larger M (C2), which at first will be taken as a point, even if it is not completely spherical. The body C1, when orbit C2, performs a translational motion near a Keplerian. It will not be a Keplerian due to external disturbances. We will use two axes systems: fixed in the center of mass of C1 and other inertial. The C1 attitude, that is, the dynamic rotation of this body is know if we know how to situate mobile system according to inertial axes system. The strong influence exerted by C2 on C1, which is a flattened body, generates torques on C1, what affects its dynamics of rotation. We will obtain the mathematical formulation of this problem assuming C1 as a planet and C2 as the sun. Also applies to case of satellite and planet. In the case of Mercury-Sun system, the disturbing potential that governs rotation dynamics, for theoretical studies, necessarily have to be developed by powers of the eccentricity. As is known, such expansions are delicate because of the convergence issue. Thus, we intend to make a development until the third order (superior orders are not always achievable because of the volume of terms generated in cases of first-order resonances). By defining a modern set of canonical variables (Andoyer), we will assemble a disturbed Hamiltonian problem. The Andoyer's Variables allow to define averages, which enable us to discard short-term effects. Our results for the resonant angle variation of Mercury are in full agreement with those obtained by D'Hoedt & Lemaître (2004) and Rambaux & Bois (2004)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of the rotation of a satellite is an old and classical problem, specially in the Euler formalism. However, with these variables, even in torque free motion problem, the integrability of the system is far from trivial, mainly when the three moments of the inertia are not equal. Another disadvantage occurs when the inclinations between some plans are null or close to zero, so the nodes become undetermined. In this work, we propose the use of modern Andoyer's variables. These are a set of canonical variables and therefore some significant advantages can be obtained when dealing with perturbation methods. On other the hand, the integrability of the torque free motion becomes very clear, as the system is reduced to a problem of one degree of freedom. The elimination of the singularities mentioned above, can be solved very easily, with Pincaré-type variables. In this work we give the background concepts of the Andoyer's variables and the disturbing potential is obtained for the rotational dynamics of a satellite perturbed by a planet. In the case when A = B (moments of inertia) and due to the current variables, the averaged system is trivially obtained through very simple integrations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)