259 resultados para Tetragonal Lysozyme
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we report on the synthesis of SrMoO4 powders by co-precipitation method and processed in a microwave-hydrothermal at 413 K for 5 h. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL). XRD analyses revealed that the SrMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. FT-Raman investigations showed the presence of Raman-active vibration modes correspondent for this molybdate. UV-vis technique was employed to determine the optical band gap of this material. SrMoO4 powders exhibit an intense PL emission at room temperature with maximum peak at 540 nm (green region) when excited by 488 nm wavelength of an argon ion laser. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho é descrever a síntese e a caracterização óptica de uma solução sólida de óxido de zircônio contendo ítrio e lantânio. Foram misturados citrato de zircônio, nitrato de ítrio e nitrato de lantânio nas proporções 94 mol% ZrO2-6 mol% Y2O3 e 92 mol% ZrO2-6 mol % Y2O3-2 mol % La2O3. A análise de espectroscopia de absorção no infravermelho com tranformada de Fourier mostra material orgânico em decomposição e a análise térmica mostra a transformação de fases da zircônia tetragonal para monoclínica, a perda de água e a desidroxilação do zircônio. A análise por difração de raios X mostra formação de fases homogênea de ZrO2-Y2O3-La2O3 demonstrando que a adição de lantânio não provoca formação de fases, promovendo uma solução sólida baseada em zircônia cúbica. Os espectros de fotoluminescência mostram bandas de absorção em 562 nm e 572 nm (350 ºC) e bandas de absorção específicas em 543 nm, 561 nm, 614 nm e 641 nm (900 ºC). O efeito fotoluminescente a baixas temperaturas é causado por defeitos como (Y Zr,Y O)', (2Y Zr,V O)'' e V O. As emissões em 614 nm e 641 nm são causadas pela transição O-2p -> Zr-4d. Uma emissão em 543 nm pode ser atribuída a centros LaO8 com transição O-2p -> La-5d.
Resumo:
An experimental and theoretical study on the piezoelectric behaviour of PZT doped with a range of calcium ion concentrations is presented. A systematic study of the effect on the piezoelectric properties of PZT doped with various concentrations of CaO at constant sintering temperature and sintering time was carried out. The remanent polarization, planar coupling factor and frequency-thickness constant increase with calcium concentration. Ab initio perturbed ion calculations show that the lattice energy decreases with calcium addition for both tetragonal and rhombohedral phases of PZT.
Resumo:
Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 Or Ba+2, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750 degrees C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 degrees C/min from ambient to 1200 degrees C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.
Resumo:
In this present work, barium ion was reacted with different ligands which are 5,7-dibromo, 5,7-dichloro, 7-iodo and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring and the obtained compounds were as follows: (I) Ba[(C9H4ONBr2)(2)].1.5H(2)O; (II) Ba[(C9H4ONCl2)(OH)]. 1H(2)O; (III) Ba[(C9H5ONI)(2)]. 1H(2)O and (IV) Ba[(C9H4ONICl)(2)]. 5H(2)O, respectively. The compounds were characterized by elemental analysis, infrared absorption spectrum (IR), inductively coupled plasma spectrometry (ICP), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimeter (DSC).The final residue of the thermal decomposition was characterized as orthorhombic BaBr2 from (I); the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and cubic BaO and the final residue, as a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 (II); the intermediate residue, as orthorhombic BaCO3 and as a final residue, a mixture of cubic and tetragonal BaO from (III); and the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and as a final residue, a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 from (IV).
Resumo:
Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.
Resumo:
ZrTiO4 (ZT), obtained by the Pechini method, was used as precursor for obtaining PLZT (lead lanthanum zirconium titanate). An aqueous solution of oxalic acid was prepared with particles of ZT, Pb(NO3)(2) and La2O3. After the PbC2O4 and La2O3 precipitate on ZT particles, the materials were calcined and X-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered, in two steps, and a density of about 8.0 g/cm(3) was obtained. After the second sintering the XRD pattern showed the occurrence of tetragonal and rhombohedral phases. This was caused by a stoichiometric deviation and the material showed a high optical transparency. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Polycrystalline Pb-0.Sr-60(0).40TiO3 thin films with the tetragonal perovskite structure were grown on platinum-coated silicon substrates by a chemical method. Raman results reveal that A1 (1 TO) symmetry modes, also known as soft modes, persist above the phase transition 14 temperature. This is due to the high structural distortion caused by the substitution effect of Sr2+ for Pb2+ ions. In contrast, the E(1TO) symmetry mode vanishes at 498 K, characterizing the ferroelectric-paraelectric transition phase. However, the Raman spectra, as a function of temperature, reveal that the ferroelectric-paraelectric phase transition may be correlated with a diffuse phase transition. The experimental data obtained from measurements of the dielectric constant as a function of temperature and frequencies showed a classical behavior of ferroelectric phase transition in Pb-0.Sr-60(0).40TiO3 thin films, rather than a relaxor ferroelectric phase transition. (C) 2004 Elsevier B.V. All rights reserved.