84 resultados para Resin composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research work was to obtain two formulations of ablative composites. These composites are also known as ablative structural composites, for applications in atmospherically severe conditions according to the high-temperature, hot gaseous products flow generated from the burning of solid propellants. The formulations were manufactured with phenolic resin reinforced with chopped carbon fiber. The composites were obtained by the hot compression molding technique. Another purpose of this work was to conduct the physical and chemical characterization of the matrix, the reinforcements and the composites. After the characterization, a nozzle divergent of each formulation was manufactured and its performance was evaluated through the rocket motor static firing test. According to the results found in this work, it was possible to observe through the characterization of the raw materials that phenolic resins showed peculiarities in their properties that differentiate one from the other, but did not exhibit significant differences in performance as a composite material for use in ablation conditions. Both composites showed good performance for use in thermal protection, confirmed by firing static tests (rocket motor). Composites made with phenolic resin and chopped carbon fiber showed that it is a material with excellent resistance to ablation process. This composite can be used to produce nozzle parts with complex geometry or shapes and low manufacturing cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This study aimed to investigate the surface roughness of composite resins subjected to thermal cycles procedure. Materials and methods. Two microfill, four microhybrid and four nanofill composites were used. The surface roughness (Ra) was initially measured in a profilometer using a cut-off 0f 0.25 mm, after 3000 and 10,000 thermal cycles. Data were subjected to ANOVA and Fischer's test (alpha = 0.05). Results. Overall, 3000 thermal cycles increased the surface roughness values for all materials and there was a trend in all groups to decrease the roughness after 10,000 thermal cycles. Conclusions. The composition of material, including the type of organic matrix, could be more relevant to roughness maintenance over time than the general behavior of composites based on particles fillers. The maintenance of smooth surface in resin-based composite restorations is totally dependent of organic composition of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study investigated the repairs of resin composite restorations after using different surface treatments.Design: Eighty four truncated cones of Filtek Z350 were prepared and thermo-cycled (20,000 cycles). Surfaces were roughened with diamond bur and etched with 37% phosphoric acid. Those cones were divided into 7 groups (N=12): 1) Prime&Bond 2.1; 2) aluminum oxide sandblasting+Prime&Bond 2.1; 3) Er:YAG laser treatment+Prime&Bond 2.1; 4) 9.6% hydrofluoric acid for 2 min-Fsilane coupling agent.; 5) silane coupling agent; 6) auto-polymerized acrylic monomer+Prime&Bond 2.1; 7) Adper Scothbond SE. Teflon device was used to fabricate inverted truncated cones of repair composite over the surface-treated. The bonded specimens were stressed to failure under tension. The data were analyzed with oneway ANOVA and Tukey tests.Results: Mean repair strengths (SD, in MPa) were, Group-2: 18.8a; Group-1: 18.7a; Group-6: 13.4ab; Group-7: 9.5bc; Group-3: 7.5bcd; Group-4: 5.2cd; Group-5: 2.6d.Conclusions: The use of diamond bur and a conventional adhesive and the use of aluminum oxide sandblasting prior to adhesive provided a simple and cost-effective solutions to composite repair. Er:YAG laser, silane alone, 9.6% hydrofluoric acid plus silane or a self-etching adhesive results in inferior composite repair strengths. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Color stability of restorative materials is essential for longevity of esthetic composite restoration over time. The aim of this investigation was assess the effect of prior water immersion on the color stability of a composite resin to red wine staining. Seventy disccshaped specimens (6mm x 1.5mm) were carried out and randomized in 7 groups (n = 10), according to distilled water immersion time at 0 (control), 24, 48, 72,120,192, and 240 h. Baseline color was measured according to the ciel*a*b* system using a reflection spectrophotometer(uvc2450, shimadzu).After that, the specimens were storage in red wine for 7 days. Color difference (∆e) after aging was calculated based on the color coordinates before(baseline) and after storage period.Data were subjected to onecway anova(alpha=0.05).The different times of immersion in.Water before to the red wine storage showed similar behavior on the color stability, without statistical difference compared to control group, immersed directly in the wine(p=0.7057).The previous water uptake of composite resin evaluated did not decrease the susceptibility to red wine staining.