108 resultados para Reduction of ZnO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8+ lung cell activation, interferon-γ recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-α. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-γ and to restrict the growth of bacilli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole-modified titania and its application on Hg (II) photoreduction in aqueous medium. Infrared spectroscopy confirmed the chemical modification of the titania matrix. The number of 2-aminothiazole groups attached to the titania was determined by Kjeldahl's method. The photocatalytic experiments were carried out in a cylindrical photoreactor thermostatted at 298 K. The resulting modified photocatalyst 2-aminothiazole titania (TiAT) revealed an enhance in the Hg (II) photoreduction capacity at studied pH values (3, 7 and 9). In addition, sorption studies showed that the photocatalyst TiAT presented a lower equilibrium time and a higher sorption capacity of Hg(II) ion, demonstrating that sorption plays a fundamental role in the photoreduction mechanism. ©2006 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper the method of reduction of the memory size in the microprogrammed controllers with sharing codes is discussed. The idea is based on the modification of internal modules and connections of the device. Next, the reduction of the microinstruction length based on the hypergraph theory is performed, thus the total size of the memory is highly reduced. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ideal time is more important than amount of insecticidal spraying to adequate the control of Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) in corn. This study aimed to evaluate lufenuron sequential sprayings effect and its rotation with other active ingredients on the population, damage caused by S. frugiperda and the impact on corn yield. The experiment was carried out in the field with six treatments: (1) one lufenuron spraying, (2) two lufenuron sprayings, (3) three lufenuron sprayings (4) four lufenuron sprayings, (5) sprayings with spinosad, lufenuron, thiamethoxam+lambdacyhalothrin and deltamethrin (in sequence, at ten days intervals) (6) control treatment. Sprayings started twenty days after the seedling had emerged and then every ten days for a maximum of four sprays. Both caterpillar population (20.9-21.7 larvae/plot) and index of damage (1.2-1.7) observed in corn plants were significantly lower in treated plots compared to control (untreated) (31.7 larvae/plot and index of damage 2.7), regardless of spraying amount. The results showed that multiple insecticide applications to control S. frugiperda do not guarantee higher yields in corn, ranging from 6375.2 to 7650.1 kg ha -1. Only one spraying of lufenuron was enough to prevent significant reduction in corn yield (6749.9 kg ha -1). © 2012 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.