217 resultados para Multilayer artificial neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data were collected and analysed from seven field sites in Australia, Brazil and Colombia on weather conditions and the severity of anthracnose disease of the tropical pasture legume Stylosanthes scabra caused by Colletotrichum gloeosporioides. Disease severity and weather data were analysed using artificial neural network (ANN) models developed using data from some or all field sites in Australia and/or South America to predict severity at other sites. Three series of models were developed using different weather summaries. of these, ANN models with weather for the day of disease assessment and the previous 24 h period had the highest prediction success, and models trained on data from all sites within one continent correctly predicted disease severity in the other continent on more than 75% of days; the overall prediction error was 21.9% for the Australian and 22.1% for the South American model. of the six cross-continent ANN models trained on pooled data for five sites from two continents to predict severity for the remaining sixth site, the model developed without data from Planaltina in Brazil was the most accurate, with >85% prediction success, and the model without Carimagua in Colombia was the least accurate, with only 54% success. In common with multiple regression models, moisture-related variables such as rain, leaf surface wetness and variables that influence moisture availability such as radiation and wind on the day of disease severity assessment or the day before assessment were the most important weather variables in all ANN models. A set of weights from the ANN models was used to calculate the overall risk of anthracnose for the various sites. Sites with high and low anthracnose risk are present in both continents, and weather conditions at centres of diversity in Brazil and Colombia do not appear to be more conducive than conditions in Australia to serious anthracnose development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two different approaches to detect, locate, and characterize structural damage. Both techniques utilize electrical impedance in a first stage to locate the damaged area. In the second stage, to quantify the damage severity, one can use neural network, or optimization technique. The electrical impedance-based, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations, this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors, and therefore, it is able to detect the damage in its early stage. Optimization approaches must be used for the case where a good condensed model is known, while neural network can be also used to estimate the nature of damage without prior knowledge of the model of the structure. The paper concludes with an experimental example in a welded cubic aluminum structure, in order to verify the performance of these two proposed methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.