172 resultados para Melting Enthalpy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU), Carga Térmica de Radiação (CTR) e Entalpia (H). O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas): CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1) quando comparada às demais coberturas, caracterizando uma situação de menor conforto térmico, não sendo observada diferença para CTR e H entre os tratamentos na região estudada.
Resumo:
Estudos termogravimétricos e calorimétricos diferenciais para ditiocarbamatos de NH4+, Na+, Zn2+, Cd2+ e Pb2+, derivados de aminas cíclicas contendo nitrogênio como heteroátomos, foram realizados em atmosferas de ar e nitrogênio, para avaliar a influência da tensão angular dos anéis na decomposição térmica destes compostos, em relação à formação de tiocianatos metálicos como via de decomposição. Os intemediários formados foram caracterizados por difração de raios-X, tendo sido encontrados oxissulfatos de Zn2+, Cd2+ e Pb2+, sob atmosfera de ar, o que sugere a decomposição térmica nestas condições como via sintética para estes compostos. Os produtos de decomposição final obtidos foram sulfetos metálicos sob nitrogênio e óxidos dos metais de transição e sulfato de sódio sob ar. Entalpias de fusão são também descritas, com base nos resultados de DSC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os frutos de Pachira aquatica Aublet apresentam sementes comestíveis com características organolépticas muito apreciadas pelas populações amazônicas, sendo pouco utilizados em outras regiões. Este trabalho teve como objetivo caracterizar as sementes quanto à composição centesimal e determinar as características físico-químicas e perfil de ácidos graxos. A determinação da composição centesimal das sementes (teores de umidade, lipídios, proteínas, cinzas e carboidratos) e análises do óleo extraído das mesmas (ácidos graxos livres, índices de peróxido, iodo, refração, saponificação, ponto de fusão e perfil de ácidos graxos) foram realizadas seguindo metodologia oficial. O teor de óleo nas sementes 38,39% demonstrou que estas têm potencial para aproveitamento industrial. Das características físico-químicas analisadas, o óleo extraído das sementes apresentou 39,2% de ácidos graxos livres (expresso em % ácido oleico), índice de iodo de 27,4 g I2.100 g-1, índice de saponificação de 208,0 mg.KOH g-1, índice de refração (40 °C) de 1,4569 e ponto de fusão de 41,9 °C. Quanto à composição de ácidos graxos do óleo predominaram os ácidos palmítico (44,93%), oleico (39,27%) e linoleico (11,35%). Tal fato favorece o uso deste óleo como matéria-prima para as indústrias alimentícia, farmacêutica e de cosméticos.
Resumo:
An intense peak of the elastic energy loss versus temperature is found in La2CuO4 at 150 K (in the LTO phase), at a vibration frequency of similar to 280 Hz. From the dependence of the dissipation curve on frequency it is deduced that the relaxation rate has an activation enthalpy of 0.23 eV. The peak is ascribed to a thermally activated dynamics of the tilts of the CuO6 octahedra which form the La2CuO4 lattice, a fraction of which are supposed to be able to switch between energetically equivalent configurations. The peak is suppressed by interstitial O; this is explained by supposing that each interstitial atom can block several octahedra into a configuration that can accommodate the distortion due to its presence. Increasing the content of excess O, two new thermally activated processes develop, attributed to the hopping of interstitial O atoms which are isolated and which are paired or otherwise aggregated. The activation enthalpy for the diffusion of O at low values of 6 is 0.48 eV.
Resumo:
The Valle Chico Massif is a member of the Early Cretaceous alkaline magmatic suite of rocks distributed around the Parana Basin. Three magmatic associations are recognized: (1) the Plutonic Association, characterized by syenites, quartz syenites, and syenogranites; (2) the Volcanic Association, mainly composed of porphyritic quartz trachytes; and (3) the Porphyritic Dike Association consisting of rhyolites and trachytes. Judging by their geochemical behavior, the rhyolites exhibit a weak peralkaline affinity, and are genetically connected by progressive melting processes, whereas the other lithologies have a metaluminous nature, and are products of mineral fractionation. An enriched mantle of Transamazonian age, geochemically similar to OIB, is postulated as a possible source.
Resumo:
Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 degrees C/min from -120 degrees C up to 30 degrees C. Aerogels were obtained by CO(2) supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 degrees C up to practically 0 degrees C, was associated to the melting of ice nanocrystals with a crystal size distribution with pore diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 degrees C, was attributed to the melting of macroscopic crystals. The DSC incremental nanopore volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20 +/- 0.01 in a characteristic length scale below xi=7.9 +/- 0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental pore volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.
Resumo:
The physicochemical electronic characteristics of SnO2 render it useful in many technical applications, including ceramic varistors, stable electrodes used in electric glass-melting furnaces and electrometallurgy of aluminum, transparent windows and chemical sensors. The use of ZnO as a sintering aid was explored in this study to obtain SnO2 as a dense ceramic. Compacts were obtained by mechanical mixing of oxides, isostatic pressing at 210 MPa and sintering in situ inside a dilatometer at heating rates of 10degreesC/min. The grain size and microstructure were investigated by scanning and transmission electron microscopy (SEM/TEM). The phases and chemical composition were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that ZnO acts as a densification aid for SnO2, improving its grain growth with additions of up to 2 mol%. ZnO forms a solid solution with SnO2 UP to 1 mol%, above which SnZnO3 precipitates in the grain boundary, potentially inhibiting shrinkage and grain growth. (C) 2004 Kluwer Academic Publishers
Resumo:
We used dynamic light scattering (DLS), a steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO42- as divalent counterion. We obtained the critical micelled concentration (cmc), aggregation number (N-agg), area per monomer (a(0)), hydrodynamic radius (R-H), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R-H approximate to 16 angstrom is roughly independent on Na2SO4 concentration; below and above this concentration range R-H increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R-H increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a(0), initially increases steeply with Na2SO4 concentration, and then decrases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N-agg obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H-mic = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy T Delta S-mic = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
5-Nitro-8-hydroxyquinoline (B) and 5,7-dinitro-8-hydroxyquinoline (C) were obtained from nitration of 8-hydroxyquinoline (A) and purified in acetone medium and under heating in which the formation of (B) or (C) depends on the amount of HNO3 added. TG curves present mass loss in only one step before and after the melting point (T-m=76 degreesC (A) and 180 degreesC (B)) in different proportions as a function of the heating rate, characterising the sublimation and the volatilisation processes, respectively. The thermal stability of the compounds follow the order: A (77 degreesC)
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.