108 resultados para Master Sintering Curve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PMN powder samples with PbO excess of 0, 1,2 and 3% were submitted to the pressing and sintering at 1200°C for 4h with a heating rate of 3°C/min. A new sintering system, developed at our laboratories, was used. It allows obtaining more information on the sintering process. The sintered samples in the new system were compared to sintered samples in the C system. The microstructure, dielectric properties and the effect of the PbO excess in different sintering systems were compared. The N system permitted to obtain a ceramic with better properties, such density, dielectric constant and very homogeneous microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different (Sn,Ti)O2 compositions were sintered at 1450 °C for 2 h with the purpose of investigating their sintering and mass transport properties. Highly dense ceramics were obtained and their structural properties studied by X-ray diffraction and scanning electron microscopy. The changes in lattice parameters were analyzed by the Rietveld method and two mass transport mechanisms were observed during sintering in different temperature ranges, evidenced by the linear shrinkage rate as a function of temperature. The effect of the concentration of TiO2 on mass transport and densiffication during sintering was analyzed by considering the intrinsic defects. System densiffication was attributed to a mass transport mechanism in the SnO2 matrix, caused by the presence of TiO2, which formed a solid solution phase. The change in the mass transport mechanism was attributed to chemical bonding between SnO2 and TiO2, which improves ionic difusion as the concentration of TiO2 increased in (Sn,Ti)O2 compositions. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-torsion tests were carried out on a commercial ceramic floor tile to verify whether this test is suitable for determining the R-curve of ceramics. The instantaneous crack length was obtained by means of compliance calibration, and it was found that the experimental compliance underestimates the real crack length. The load vs. displacement curves were also found to drop after maximum loading, causing the stress intensity factor to decline. The R-curves were calculated by two methods: linear elastic fracture mechanics and the energetic method. It was obtained that the average values of crack resistance, R, and the double of the work of fracture, 2 · γwof, did not depend on notch length, a0, which is a highly relevant finding, indicating that these parameters were less dependent on the test specimen's geometry. The proposal was to use small notches, which produce long stable crack propagation paths that in turn are particularly important in the case of coarse microstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GEANT4 simulations are essential for the development of medical tomography with proton beams pCT. In the case of thin absorbers the latest releases of GEANT4 generate very similar final spectra which agree well with the results of other popular Monte Carlo codes like TRIM/SRIM, or MCNPX. For thick absorbers, however, the disagreements became evident. In a part, these disagreements are due to the known contradictions in the NIST PSTAR and SRIM reference data. Therefore, it is interesting to compare the GEANT4 results with each other, with experiment, and with diverse code results in a reduced form, which is free from this kind of doubts. In this work such comparison is done within the Reduced Calibration Curve concept elaborated for the proton beam tomography. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y 2O 3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders. © (2010) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the structural characterization of Ti-10Si-5B and Ti-20Si-10B (at-%) alloys produced by high-pressure assisted sintering. Sintering was performed in air at 1100 and 1200°C for 60 s using pressure levels of 5 GPa. Structural evaluation of sintered samples was conducted by means of scanning electron microscopy and energy dispersive spectrometry. Samples were successfully consolidated after sintering, which presented theoretical density values higher than 99%. The microstructures of the sintered Ti-10Si-5B and Ti-20Si-10B alloys revealed the presence of the TiSS, TiB, TiB2, Ti5Si3, Ti5Si4, TiSi, and TiSi2.phases. A small amount of Ti6Si2B was formed after high-pressure assisted sintering of the Ti-20Si-10B alloy (5GPa, 1100°C for 60 s) indicating that equilibrium structures were not achieved during short sintering times. No oxygen and carbon contamination was detected in structures of Ti-Si-B alloys after high-pressure sintering at 1100 and 1200°C without controlled atmosphere. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Jatropha gossypifolia has been used quite extensively by traditional medicine for the treatment of several diseases in South America and Africa. This medicinal plant has therapeutic potential as a phytomedicine and therefore the establishment of innovative analytical methods to characterise their active components is crucial to the future development of a quality product. Objective To enhance the chromatographic resolution of HPLC-UV-diode-array detector (DAD) experiments applying chemometric tools. Methods Crude leave extracts from J. gossypifolia were analysed by HPLC-DAD. A chromatographic band deconvolution method was designed and applied using interval multivariate curve resolution by alternating least squares (MCR-ALS). Results The MCR-ALS method allowed the deconvolution from up to 117% more bands, compared with the original HPLC-DAD experiments, even in regions where the UV spectra showed high similarity. The method assisted in the dereplication of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. Conclusion The MCR-ALS method is shown to be a powerful tool to solve problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd. Extracts from J. gossypifolia were analyzed by HPLC-DAD and, dereplicated applying MCR-ALS. The method assisted in the detection of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. The application of MCR-ALS allowed solving problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)