102 resultados para Major histocompatibility complex of class I
Resumo:
This study aims to evaluate the effect of using anionic collagen membranes in guided tissue regeneration treatment of Class II furcation lesions in dogs. The defects were created in the buccal furcation of 16 mandibular premolars of four dogs. After 56 days without plaque control, the sites were scaled and divided into two groups according to the treatment applied: control sites, open flap debridement; and test sites, guided tissue regeneration treatment. The animals were killed after 3 months. Histological and histometrical analyses showed that the collagen membrane was better than open flap debridement in terms of newly formed cementum and epithelial migration prevention. It provided effective blockade of epithelial tissue and promoted regeneration of lost periodontal tissues, suggesting that the membrane warrants further study. (C) 1997 Elsevier B.V. Limited. All rights reserved.
Resumo:
In the title co-crystal, C7H5NO4. C5H4N2O3, the two components are linked by an intermolecular hydrogen band between the O-H and N-O groups [O ... O 2.577(3) Angstrom]. The interplanar angle between the planes of the rings of the molecules is 5.3 (2)degrees. The rings are stacked in the crystal with a mean interplanar distance of 3.279 (3) Angstrom.
Resumo:
The three-dimensional structure of human uropepsin complexed with pepstatin has been modelled using human pepsin as a template. Uropepsin is an aspartic proteinase from the urine, produced in the form of pepsinogen A in the gastric mucosa. The structure is bilobal, consisting of two predominantly beta -sheet lobes which, as observed in other aspartic proteinases, are related by a pseudo twofold axis. A structural comparison between binary complexes of pepsin:pepstatin and uropepsin:pepstatin is discussed. (C) 2001 Academic Press.
Resumo:
Fernanda Canduri, Lit C. Mancuso, Andreimar M. Soares, Jose R. Giglio, Richard J. Ward and Raghuvir K. Arni. Crystallization of piratoxin I, a myotoxic Lys49-phospholipase A(2) homologue isolated from the venom of Bothrops pirajai. Toxicon 36, 547-551, 1998.-Large single crystals of piratoxin I, a Lys49-PLA(2) homologue with low enzymatic activity, have been obtained. The crystals belong to the orthorhombic system space group p2(1)2(1)2(1) and diffract X-raps to a resolution of 2.8 Angstrom. Preliminary analysis reveals the presence of two molecules in the crystallographic asymmetric unit. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A thrombin-like serine protease, jararassin-I, was isolated from the venom of Bothrops jararaca. The protein was obtained in high yield and purity by a single chromatographic step using the affinity resin Benzamidine-Sepharose CL-6B. SDS-PAGE and dynamic light scattering analyses indicated that the molecular mass of the enzyme was about 30 kD. The enzyme possessed fibrinogenolytic and coagulant activities. The jararassin-I degraded the Bbeta chain of fibrinogen while the Aalpha chain and gammachain were unchanged. Proteases inhibitors, PMSF and benzamidine inhibited the coagulant activity. These results showed jararassin-I is a serine protease similar to coagulating thrombin-like snake venom proteases, but it specifically cleaves Bbeta chain of bovine fibrinogen. Single crystals of enzyme were obtained (0.2 mmx0.2 mmx0.2 mm) and used for X-ray diffraction experiments.
Resumo:
Myotoxin-I (MjTX-I) was purified to homogeneity from the venom of Bothrops moojeni by ion-exchange chromatography on CM-Sepharose. Its molecular weight, estimated by SDS-PAGE, was 13,400 (reduced) or 26,000 (unreduced). The extinction coefficient (E-1.0 cm(1.0 mg/ml)) of MjTX-I was 1.145 at lambda = 278 nm, pH 7.0, and its isoelectric point was 8.2 at ionic strength mu = 0.1. When lyophilized and stored at 4 degrees C, dimeric, trimeric, and pentameric forms of the protein were identified by SDS-PAGE. This heterogeneous sample could be separated into three fractions by gel filtration on Sephadex 6-50. The fractions were analyzed by isoelectric focusing, immunoelectrophoresis, and amino acid composition, which indicated that heterogeneity was the result of different levels of self-association. Protein sequencing indicated that MjTX-I is a Lys49 myotoxin and consists of 121 amino acids (M-r = 13,669), containing a high proportion of basic and hydrophobic residues. It shares a high degree of sequence identity with other Lys49 PLA(2)-like myotoxins, but shows a significantly lower identity with catalytically active Asp49 PLA(2)s. The three-dimensional structure of MjTX-I was modeled based on the crystal structures of three highly homologous Lys49 PLA(2)-like myotoxins. This model showed that the amino acid substitutions are conservative, and mainly the beta-wing region, and the C-terminal extended random coil. MjTX-I displays local myotoxic and edema-inducing activities in mice, and is lethal by intraperitoneal injection, with an LD50 value of 8.5 +/- 0.8 mg/kg, In addition, it is cytotoxic to myoblasts/ myotubes in culture, and disrupts negatively charged liposomes. In comparison with the freshly prepared dimeric sample, the more aggregated forms showed significantly reduced myotoxic activity. However, the edema-inducing activity of MjTX-I was independent of molecular association. Phospholipase A(2) activity on egg yolk, as well as anticoagulant activity, were undetectable both in the native and in the more associated forms. His, Tyr, and Trp residues of the toxin were chemically modified by specific reagents. Although the myotoxic and lethal activities of the modified toxins were reduced by these treatments, neither its edema-inducing or Liposome-disrupting activities were significantly altered. Rabbit antibodies to native MjTX-I cross-reacted with the chemically modified forms, and both the native and modified MjTX-I preparations were recognized by antibodies against the C-terminal region 115-129 of myotoxin II from B. asper, a highly Lys49 PLA(2)-homologue with high sequencial similarity. (C) 2000 Academic Press.
Resumo:
Liposarcus anisitsi is an armoured catfish that presents accessorial air oxygenation through a modified stomach, which allows this species to survive in waters with very low oxygen content. Analysis of its haemolysate has shown the presence of four haemoglobins; this work focuses on the main component, haemoglobin I. It has been crystallized in two different forms and X-ray diffraction data have been collected to 2.77 and 2.86 Angstrom resolution using synchrotron radiation. Crystals were determined to belong to the space groups C2 and P2(1) and preliminary structural analysis revealed the presence of one tetramer in the asymmetric unit in both crystal forms. The structure was determined using a standard molecular-replacement technique.
Resumo:
Bothropstoxin-I (BthTX-I), from B. jararacussu venom, is a phospholipase A(2) (PLA(2)) homologue devoid of enzymatic activity. Besides inducing severe myonecrosis, BthTX-I promotes paralysis of both directly and indirectly evoked contractions in isolated neuromuscular preparations. We applied an experimental paradigm in order to characterize the steps involved in the toxic effects of BthTX-I on mouse neuromuscular junction. Myotoxicity was assessed by microscopic analysis of extensor digitorum longus muscles; paralyzing activity was evaluated through the recording of isolated contractions indirectly evoked in phrenic-diaphragm preparations. After 90 min at 35 degreesC, BthTX-I induced complete and irreversible paralysis, and damaged 30.3 +/- 2.7% of muscle fibers. In contrast, no effect was observed when tissues were incubated with BthTX-I at 10degreesC for 60 min and subsequently washed with toxin-free solution and maintained at 35 degreesC. These results indicate that the binding of BthTX-I to the cellular tissue surface is very weak at low temperature and that an additional factor is necessary. However, when tissues were submitted to BthTX-I (10degreesC for 60 min), and the temperature was elevated to 35 degreesC, omitting the washing step, it was observed muscle paralysis and damage in 39.04 +/- 4.2% of muscle fibers. These results indicate that a temperature-dependent step is necessary for BthTX-I to promote both its myotoxic and paralyzing activities. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
The myotoxic Lys-49 phospholipase bothropstoxin I was crystallized, and X-ray diffraction data were collected to 3.5 Angstrom resolution. Preliminary analysis reveals the presence of four molecules in the asymmetric unit.