89 resultados para LC Classification System
Resumo:
The object of this investigation was to identify and analize aspects of the health status related to absenteism in physical education teachers in the municipal education system of the city of Campinas, Brazil, as related to the medical leave program. The non-concurrent prospective study was accomplished by means of a comparison with teachers who work only in the classroom, refering to a three year period. In the variables of greatest interest, the Pearson non-parametric chi-square (X2) statistical test was adopted. Calculations of relative risk and level of confidence were made using the Epi-info computer program. Significant differences were observed in the following diagnostic groups favoring the not exposed group: i) Supplementary Classification of factors that exercise influence over the health status and access to health services and ii) Digestive system illness; while the physical education teachers showed a significant difference in: i) diseases of the musculoskeletal and connective tissue system and ii) Injuries and poisoing. Possible explications for some of the adverse effects as well as the protective ones that were observed include physical activity as a way of life along with being a physical education teacher and on the other side, peculiar behavior of epidemiological descriptive characteristics, like sex and age, within the socio-economic context of the country. © Copyright Moreira Jr. Editora.
Resumo:
In this paper, we show a local-in-time existence result for the 3D micropolar fluid system in the framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and contains strongly singular functions and measures. © 2013 Springer Basel.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Evidences suggest a role of renin-angiotensin system (RAS) in the development of chronic allograft injury. We correlated intrarenal angiotensin-converting enzyme, angiotensin II (Angio II) and transforming growth factor β1 (TGFβ1) expression in 58 biopsies-proven chronic allograft nephropathy (CAN) with tissue injury and allograft survival. The biopsies with CAN were graded according to Banff classification as I (22 cases), II (17) and III (19); 27 biopsies also showed a mononuclear inflammatory infiltrate in scarred areas. There were increased expression of angiotensin converting-enzyme (ACE), Angio II and TGFβ1 mainly in tubulointerstitial compartment in the group with CAN; there was no association of Angio II and TGFβ1 expression with interstitial fibrosis. There were no significant differences of ACE, Angio II and TGFβ1 expression between the patients treated and untreated with RAS blockade, and with the graft outcome. Interstitial inflammatory infiltrate had positive correlation with interstitial fibrosis and significant impact on graft survival at 8 years. Our study showed in a group of cases with CAN a high percentage of inflammatory infiltrate that correlated with interstitial fibrosis and graft outcome. The chronic inflammatory changes in these cases did not show significant association with local RAS expression.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)