121 resultados para Interferential currents
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A proposta deste trabalho é apresentar uma nova metodologia para determinação experimental das capacitancias parasitas do motor de indução trifásico de rotor em gaiola. As capacitancias parasitas fazem parte do circuito equivalente do motor para estudos de interferência eletromagnética causada no motor de indução em modo comum quando ele for acionado por inversor controlado por modulação por largura de pulsos (MLP). Os procedimentos propostos para o desenvolvimento deste novo método consistem em: a) determinação dos parâmetros do circuito equivalente do motor de indução trifásico, em regime permanente, através de ensaio em laboratório; b) estabelecer configurações de ligações entre o inversor MLP e o motor para medições das grandezas de interesse que são as seguintes: tensões de modo comum e de eixo, correntes de fuga e de eixo, através de circuito de medição desenvolvido para este fim; c) calcular os valores das capacitancias parasitas entre estator e carcaça do motor; estator e rotor; rotor e carcaça e de rolamento utilizando a expressão matemática da definição de capacitancia; d) utilizar o software Pspice para simular o sistema motor de indução trifásico, alimentado por inversor MLP, com os circuitos equivalentes em baixas e altas frequências; e) obter as formas de onda características do fenômeno de modo comum.
Resumo:
The construction of a q-deformed N = 2 superconformal algebra is proposed in terms of level-1 currents of the U-q(<(su)over cap>(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed energy-momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U-q(<(su)over cap>(N + 1)) is also proposed.
Resumo:
The neutral wire in most existing power flow and fault analysis software is usually merged into phase wires using Kron's reduction method. In some applications, such as fault analysis, fault location, power quality studies, safety analysis, loss analysis etc., knowledge of the neutral wire and ground currents and voltages could be of particular interest. A general short-circuit analysis algorithm for three-phase four-wire distribution networks, based on the hybrid compensation method, is presented. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. A generalised fault analysis method is applied to the distribution network for conditions with and without embedded generation. Results obtained from several case studies on medium- and low-voltage test networks with unbalanced loads, for isolated and multi-grounded neutral scenarios, are presented and discussed. Simulation results show the effects of neutrals and system grounding on the operation of the distribution feeders.
Resumo:
Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL(M + 1, M - k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL(M + 1, M - k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M - k) Poisson bracket algebras generalising the familiar nonlinear W-M+1 algebra. Discrete Backlund transformations for SL(M + 1, M - k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL(M + 1, 1) KdV hierarchy.
Resumo:
The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 10(3)-10(6) V/cm exhibits exp beta U-1/2 behavior with beta = beta(Schottky) below the glass transition temperature (T-g congruent to 90 degrees C), and beta = beta(Poole-Frenkel) above T-g. Coordinated temperature measurements of de currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T < T-g is consistent with the so-called ''anomalous'' Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Structural and electrical properties of ZnO varistors were investigated as a function of spinel composition. Six varistor mixtures differing only in chemical composition of spinel, were prepared by mixing separately synthesized constituent phases (DSCP method). Compositions of constituent phases in sintered samples were investigated by changes of lattice parameters of the phases, as well as by EDS analysis of the constituent phases. It was found that compositions of ZnO, intergranular and spinel phases were partially changed during sintering due to redistribution of additives, that was controlled by starting spinel composition and its stability. Electrical characterization showed significant difference in electrical properties of investigated varistors: nonlinearity coefficients ranging from 22 to 55 and leakage currents differing by the order of magnitude. Activation energies of conduction were obtained from ac impedance spectroscopy measurements. Calculated values of activation energies were in the range 0.61-1.0 eV confirming difference in defect structure of ZnO grain boundaries in varistors containing different spinel phases. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na+ channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX 11, revealed that ATX 11 altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na+ currents in CAl interneurons differently in various CAl neurons and the toxin is useful to classify Na+ channel subtypes. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive C-12(nu(mu),mu(-))X cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of similar to8% for the total cross section, relative to that calculated with the free nucleon form factors.
Resumo:
Crowbar switches are largely used in plasma devices, such as field-reversed configuration (FRC) machines and tokamaks, to avoid energy return from the discharge coil to the capacitor bank. A method of identification of all resistances, inductances and currents involved in capacitor bank discharges using a crowbar is proposed based on the derivation of the general analytical form of the coil current. This analysis can also be used for optimization of the discharge, reducing the ripple amplitude inherent in the crowbar-switched current. Fitting results of the TC-1 UNICAMP FRC device are also presented in this work.
Resumo:
The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.
Resumo:
This paper presents an approximate universality displayed by thermally stimulated depolarization currents ruled by stretched exponential relaxations when properly re-scaled. A visually perfect universality occurs especially when the energy and the heating rate are varied. It becomes somewhat poorer when the frequency factor or the stretched exponent changes. Empirical relations between the half widths and other pertinent parameters are given.