141 resultados para Infrared thermal imaging
Resumo:
In this work, spinels with the general formula Zn2-xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 A degrees C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 A degrees C, which disappeared after cobalt addition, indicating that organic material elimination was favored.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH(2)C(2)O(3))(2)center dot nH(2)O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH(2)C(2)O(3)) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N(2) atmospheres.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tetrafluorborate copper(I) complexes containing acetonitrile, triphenylphosphine, 1,10-phenanthroline, 2,2′-bipyridine and 2-quinolinethiol have been prepared in order to study their thermal stabilities as a function of the ligands present. The characterization of the above compounds was carried out by elemental analysis and IR spectroscopy. Their thermal behaviour has been investigated and the final products were identified by X-ray powder diagrams. © 1995.
Resumo:
The thermal decomposition of aspirin in air and dry air flux was investigated. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), infrared absorption spectra and thin layer chromatography have been used to study the thermal decomposition of this compound. The results permit the identification of some compounds revealed in the first step of the TG-DTA curves, and also suggest the thermal decomposition mechanism.
Resumo:
Solid M-Ox compounds, where M represents Mg(II), Zn(II), Pb(II) and NbO(III), and Ox is 8-quinolinol, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and infrared absorption spectra (IR) have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1997 Akadémiai Kiadó.
Resumo:
Solubility and pH precipitation studies were carried out to obtain the binuclear complex {[TiO(C9H6NO)2][Sn(C9H6NO) 2]} involving 8-hydroxyquinoline as chelating agent. The compound, the individual mononuclear complexes and their physical mixture were evaluated by means of techniques such as TG, DTA, elemental analysis, X-ray diffraction, IR spectroscopy. The properties of the original compounds and also the thermoanalytical conditions exerted a great influence on the degree of crystallinity and on the crystalline phase of the mixed oxide obtained as final product of the thermal decomposition.
Resumo:
Strontium complexes of 5,7-dibromo-, 5,7-dichloro-, 7-iodo- and 5-chloro-7-iodo-8-hydroxyquinoline were precipitated from an aqueous ammonia and acetone medium. The complexes obtained were Sr[(C9H4ONBr2)2]·2.5H 2O; Sr[(C9H4ONCl2)(OH)]·1.5H2O; Sr[(C9H5ONI)2]·5H2O and Sr[(C9H4ONICl)(OH)]·1.25H2O. The residues of their thermal decomposition were SrBr2; a mixture of SrCl2, SrCO3 and SrO3 SrCO3, and SrCO3, respectively. All were characterized by means of thermogravimetry, differential thermal analysis, complexometry with EDTA, atomic absorption spectroscopy, IR spectroscopy and X-ray diffraction. © 1999 Akadémiai Kiadó.
Resumo:
Some new compounds of cinnamic acid with lighter trivalent lanthanides were prepared in the solid state. The compounds have general formula ML3·H2O, where L is cinnamate (C6H5-CH=CH-COO-) and M is La, Ce, Pr, Nd or Sm. Thermogravimetry, derivative thermogravimetry, differential scanning calorimetry, infrared absorption spectra and X-ray diffraction powder patterns were used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.
Resumo:
Some new compounds of cinnamic acid with the latter trivalent lanthanides and yttrium(III) were synthesized in the solid state. The compounds have the general formula LnL3, where Ln represents trivalent Eu to Lu or Y ions and L is the cinnamate anion (C6H5-CH=CH-COO-). Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), infrared absorption spectra and X-ray diffraction powder patterns were used to characterize and to study the thermal behaviour of these compounds. © 2002 Elsevier Science B.V. All rights reserved.