163 resultados para Glass transition temperature Tg


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation kinetics of food constituents may be related to the matrix molecular mobility by glass transition temperature. Our objective was to test this approach to describe ascorbic acid degradation during drying of persimmons in an automatically controlled tray dryer with temperatures (40 to 70 degrees C) and air velocities (0.8 to 2.0 m/s) varying according a second order central composite design. The Williams-Landel-Ferry model was satisfactorily adjusted to degradation curves for both control strategies adopted-constant air temperature and temperature fixed inside the fruit. Degradation rates were higher at higher drying temperatures, independent of the necessary time to attain the desired moisture content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A side-chain methacrylate copolymer functionalized with the nonlinear optical chromophore 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene, disperse red-13, was prepared and characterized. The chromophore relaxation was investigated measuring the decay of the electrooptic coefficient r(13) and the complex dielectric constant at different temperatures. Results obtained below and above T-g were analyzed using the Kohlrausch-Williams-Watts(KWW) equation, through the study of the temperature dependence of the KWW parameters. Above T-g the relaxation time experimental data were fitted to the Williams-Landel-Ferry (WLF) equation and its parameters determined. Chromophore relaxation leading to the decrease of electrooptic properties was found associated with a primary alpha relaxation. The obtained WLF equation parameters were introduced into the Adam-Gibbs-Tool-Narayanaswamy-Moynihan equation, and the overall relaxation time temperature dependence was successfully obtained in terms of the fictive temperature, accounting for the sample thermal treatment and allowing optimized thermal treatment to be found. The copolymer KWW stretching parameter at the glass transition temperature lies close to the limit value for short-range interactions, i.e., 0.6, suggesting that the chromophore group is participating in primary a relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses having the composition As2S3(1-x)-P2S5(x) with x ranging from 0 to 0.7 have been investigated to determine the compositional effect on properties and local structure. Glass transition temperature (T,) decreases and molar volume (V,,) increases with an increase in P content. Using P-31 NMR, we measured the strength of the P-31-P-31 magnetic dipolar interaction in the glass samples and the AsPS4 crystallized phase. Based on these data, we observed the formation of the As2P2S8 network, which reflects an increase in the average coordination number and a decrease in the degree of rigidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

\A new class of tungstate fluorophosphate glasses was identified in the NaPO3-BaF2-WO3 ternary system. The variation of several physical properties was determined with respect to chemical composition. Characteristic temperatures, density and refractive index increase as tungsten oxide content increases. The optical transmission range and specially the energy bandgap depend of the WO3 amount. No crystallization could be observed for the Most WO3 concentrated vitreous samples (greater than or equal to20% molar). Color and optical properties of the glasses depend of the melting time because of the presence of reduced tungsten species like W5+ and W4+. In addition, photodarkening is observed in tungsten rich glass samples under UV laser illumination and this phenomenon can be reversible by heat treatment near the glass transition temperature. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of tin in the network of silicate glasses produces changes in several of their physico-chemical properties. Glasses with the composition (mol%) 22Na(2)O (.) 8CaO (.) 70SiO(2) containing up to 5 wt% of SnO2 were analyzed under several experimental techniques. Dilatometric measurements showed an increase of the glass transition temperature with increasing tin content, while the average thermal expansion coefficient is reduced. Vickers microhardness, density, and refractive index also increase with the tin content. Diffuse reflectance spectra in the infrared (DRIFT) showed that the presence of tin, even at low concentrations, is responsible for some structural changes since there is an increase of the bridging oxygen concentration. The doped glasses present a brown color and optical absorption spectra measurements are interpreted as being due to precipitation of tin in the form of colloidal particles during cooling of the melted glass. In the Na+ <-> K+ ion exchange process the presence of tin in the glass network hinders the diffusion of these ions. The diffusion coefficients of those ions were calculated by the Boltzmann-Matano technique, after concentration profiles obtained by EDS measurements. All results obtained present evidences that Sn4+ cation acts as a glass network former. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses in the binary system (100 - x)SbPO4-xWO3 (20 <= x <= 60, x in mol%) have been prepared and characterized. Differential thermal analysis (DTA) shows that the glass transition temperature, T-g increases from 412 degrees C, for samples containing 20 mol% of WO3 to 481 degrees C observed for glass containing 60 mol%. Sample containing 40 mol% in WO3 were observed to be the most stable against devitrification. The structural organization of the glasses has been studied by using Fourier transform infra-red (FTIR), Raman, P-31 Magic angle spinning (MAS) and spin echo nuclear magnetic resonance (NMR) spectroscopies. Results suggest two distinct networks comprising the glass structure, one with high SbPO4 content and the other characteristic of the highest WO3 content samples. The glasses present photochromic properties. Colour changes are observed for samples after exposure to ultraviolet or visible laser light. XANES, at L-1 absorption edge of tungsten, suggests partial reduction from W6+ to W5+ species during the laser irradiation. The photochromic effects and the colour changes, promoted by laser excitation, are reversible and easily removed by heat for during 1 h at 150 degrees C. Subsequent 'write/erase' cycles can be done without degradation of the glasses. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 - x)% NaPO3-x% MoO3 (0 <= x <= 70) glass-forming system by a modified melt method that allowed good optical quality samples to be obtained. The structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), Raman scattering, and solid-state nuclear magnetic resonance (NMR) for P-31, Na-23, and Mo-95 nuclei. Addition of MoO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures up to x = 45, suggesting a significant increase in network connectivity. For this same composition range, vibrational spectra suggest that the Mo6+ ions are bonded to some nonbridging oxygen atoms (Mo-O- or Mo=O bonded species). Mo-O-Mo bond formation occurs only at MoO3 contents exceeding x = 45. P-31 magic-angle spinning (MAS) NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. These sites are denoted as Q(2Mo)((2)), Q(1Mo)((2)), and Q(0Mo)((2)), respectively. For x < 0.45, the populations of these sites can be described along the lines of a binary model, according to which each unit of MoO3 converts two Q(nMo)((2)) sites into two Q((n+1)Mo)((2)) sites (n = 0, 1). This structural model is consistent with the presence of tetrahedral Mo(=O)(2)(O-1/2)(2) environments. Indeed, Mo-95 NMR data suggest that the majority of the molybdenum species are four-coordinated. However, the presence of additional six-coordinate molybdenum in the MAS NMR spectra indicates that the structure of these glasses may be more complicated and may additionally involve sharing of network modifier oxide between the network formers phosphorus and molybdenum. This latter hypothesis is further supported by Na-23{P-31} rotational echo double resonance (REDOR) data, which clearly reveal that the magnetic dipole-dipole interactions between P-31 and Na-23 are increasingly diminished with increasing molybdenum content. The partial transfer of modifier from the phosphate to the molybdate network former implies a partial repolymerization of the phosphate species, resulting in the formation of Q(nMo)((3)) species and accounting for the observed increase in the glass transition temperature with increasing MoO3 content that is observed in the composition range 0 <= x <= 45. Glasses with MoO3 contents beyond x = 45 show decreased thermal and crystallization stability. Their structure is characterized by isolated phosphate species [most likely of the P(OMo)(4) type] and molybdenum oxide clusters with a large extent of Mo-O-Mo connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of differential scanning calometry (DSC), x-ray diffraction (XRD), and F-19 nuclear magnetic resonance (NMR) of InF3-based glasses, treated at different temperatures, ranging from glass transition temperature (T-g) to crystallization temperature (T-c), are reported. The main features of the experimental results are as follows. DSC analysis emphasizes several steps in the crystallization process. Heat treatment at temperatures above T-g enhances the nucleation of the first growing phases but has little influence on the following ones. XRD results show that several crystalline phases are formed, with solid state transitions when heated above 680 K, the F-19 NMR results show that the spin-lattice relaxation, for the glass samples heat treated above 638 K, is described by two time constants. For samples treated below this temperature a single time constant T-1 was observed. Measurements of the F-19 spin-lattice relaxation time (T-1), as a function of temperature,made possible the identification of the mobile fluoride ions. The activation energy, for the ionic motion, in samples treated at crystallization temperature was found to be 0.18 +/- 0.01 eV. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass formation has been investigated in binary systems based on antimony oxide as the main glass former: (100-x)Sb2O3-xWO3, (5 < x < 65), (100 - x)Sb2O3-xSbPO(4), (5 < x < 80) and (100 - x)Sb2O3-x[Sb(PO3)(3)](n), (10 < x < 40). Ternary systems derived from the Sb2O3-WO3 binary glass have also been studied: Sb2O3-WO3-BaF2 Sb2O3-WO3-NaF and Sb2O3-WO3-[Sb(PO3)(3)](n). Glass transition temperature ranges from 280 degreesC to 380 degreesC. It increases as the concentration in tungsten oxide or antimony phosphate increases. Refractive index is larger than 2. Tungsten-containing glasses are yellow in transmission and turn green at the largest WO3 content. Optical transmission and temperatures of glass transition, T-g, onset of the crystallization. T-x, and maximum of crystallization, T-p, have been measured using differential scanning calorimetry (DSC). These glasses have potential photonic applications. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the influence of Ga addition on photoinduced effect, GaGeS glasses with constant atomic ratio S/Ge = 2.6 have been prepared. Using Raman spectroscopy, we have reported the effect of Ga on the structural behavior of these glasses. An increase of the glass transition temperature T(g), the linear refractive index and the density have been observed with increasing gallium content. The photoinduced phenomena have been examined through the influence of time exposure and power density, when exposed to above light bandgap (3.53 eV). The correlation between photoinduced phenomena and Ga content in such glasses are shown hereby. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical properties of poly p-phenylene sulfide (PPS) samples sandwiched between metallic electrodes are studied as a function of the applied voltage, temperature, time, electrode materials, and sample thickness. Superlinear current-voltage characteristics are observed, which are explained in terms of Schottky effect and space-charge limited currents (SCLC). The conductivity data for variable-range hopping have also been studied, but the calculated values of density of states are approximately one order of magnitude higher than those obtained by SCLC measurements. From thermally stimulated polarization currents we observed a current peak around 80°C that was related with the glass transition temperature of PPS. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.