138 resultados para Electric current measurement
Resumo:
The theory presented in this paper was primarily developed to give a physical interpretation for the instantaneous power flow on a three-phase induction machine, without a neutral conductor, on any operational state and may be extended to any three-phase load. It is a vectorial interpretation of the instantaneous reactive power theory presented by Akagi et al. Which, believe the authors, isn't enough developed and its physical meaning not yet completely understood. This vectorial interpretation is based on the instantaneous complex power concept defined by Torrens for single-phase, ac, steady-state circuits, and leads to a better understanding of the power phenomenon, particularly of the distortion power. This concept has been extended by the authors to three-phase systems, through the utilization of the instantaneous space vectors. The results of measurements of instantaneous complex power on a self-excited induction generator's terminals, during an over-load application transient, are presented for illustration. The compensation of reactive power proposed by Akagi is discussed and a new horizon for the theory application is opened.
Resumo:
This paper presents a novel single-phase high power factor PWM boost rectifier, featuring soft commutation of the active switches at zero-current (ZCS). It incorporates the most desirable properties of the conventional PWM and the soft-switching resonant techniques. The input current shaping is achieved with average current mode control, and continuous inductor current mode. This new PWM converter provides ZCS turn-on and turn-off of the active switches, and it is suitable for high power applications employing IGBTs. Principle of operation, theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400 Vdc output voltage are presented. The measured efficiency and power factor were 96.2% and 0.99 respectively, with an input current THD equal to 3.94%, for an input voltage THD equal to 3.8%, at rated load.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article assesses the use of the constant current (CC) method for characterizing dielectric films. The method is based on charging the sample with a constant current (current stress) and measuring the corresponding voltage rise under the closed circuit condition. Our article shows that the CC method is an alternative to the constant voltage stressing method to study the electric properties of nonpolar, ferroelectric, and polar polymers. The method was tested by determining the dielectric constant of polytetrafluoroethylene, and investigating the electric conduction in poly(ethylene terephthalate). For the ferroelectric polymer poly(vinylidene fluoride), it is shown that hysteresis loops and the dependence of the ferroelectric polarization on the electric field can be obtained. (C) 2001 American Institute of Physics.
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
In a general way, in an electric power utility the current transformers (CT) are used to measurement and protection of transmission lines (TL) 1 The Power Line Carriers systems (PLC) are used for communication between electrical substations and transmission line protection. However, with the increasing use of optical fiber to communication (due mainly to its high data transmission rate and low signal-noise relation) this application loses potentiality. Therefore, other functions must be defined to equipments that are still in using, one of them is detecting faults (short-circuits) and transmission lines insulator strings damages 2. The purpose of this paper is to verify the possibility of using the path to the ground offered by the CTs instead of capacitive couplings / capacitive potential transformers to detect damaged insulators, since the current transformers are always present in all transmission lines (TL's) bays. To this a comparison between this new proposal and the PLC previous proposed system 2 is shown, evaluating the economical and technical points of view. ©2010 IEEE.
Resumo:
This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698405]
Resumo:
The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes an alternative procedure to obtain an equivalent conductor from a bundled conductor, taking into account the distribution of the current in subcondutors of the bundle. Firstly, it is introduced a brief background about the concept of Geometric Mean Radius (GMR) and how this methodology is applied to define an equivalent conductor and its electric parameters. Emphasizing that the classical procedure, using GMR, is limited to premise which the current is equally distributed through subconductors. Afterwards, it is described the development of proposed method and applications for an equivalent conductor obtained from a conventional transmission line bundled conductor and from an equivalent conductor based on a bundle with compressed SF(6) insulation system, where the current is unequally distributed through subconductors.
Resumo:
Oral administration is the most convenient route for drug therapy. The knowledge of the gastrointestinal transit and specific site for drug delivery is a prerequisite for development of dosage forms. The aim of this work was to demonstrate that is possible to monitor the disintegration process of film-coated magnetic tablets by multi-sensor alternate current Biosusceptometry (ACB) in vivo and in vitro. This method is based on the recording of signals produced by the magnetic tablet using a seven sensors array and signal-processing techniques. The disintegration was confirmed by signals analysis in healthy human volunteers' measurements and in vitro experiments. Results showed that ACB is efficient to characterize the disintegration of dosage forms in the stomach, being a research tool for the development of new pharmaceutical dosage forms. (C) 2003 Elsevier B.V. All rights reserved.