87 resultados para Dark matter theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was earlier shown that an SO(9,1) θα spinor variable can be constructed from RNS matter and ghost fields. θα has a bosonic world-sheet super-partner λα which plays the role of a twistor variable, satisfying λΓμ λ = ∂xμ + iθΓμ ∂θ. For Type IIA superstrings, the left-moving [θL α, λL α] and right-moving [θRα, λRα] can be combined into 32-component SO(10,1) spinors [θA, λA]. This suggests that λAΓAB 11 λB = 2λL αλRα can be interpreted as momentum in the eleventh direction. Evidence for this interpretation comes from the zero-momentum vertex operators of the Type IIA superstring and from consideration of DD-branes. As in the work of Bars, one finds an SO(10,2) structure for the Type IIA superstring and an SO(9, 1) × SO(2, 1) structure for the Type IIB superstring. © 1997 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed dynamical analysis of the tachyonic teleparallel dark energy model, in which a noncanonical scalar field (tachyon field) is nonminimally coupled to gravitation, is performed. It is found that, when the nonminimal coupling is ruled by a dynamically changing coefficient α≡f ,φ/√f, with f(φ) an arbitrary function of the scalar field φ, the Universe may experience a field-matter-dominated era φMDE, in which it has some portions of the energy density of φ in the matter dominated era. This is the most significant difference in relation to the so-called teleparallel dark energy scenario, in which a canonical scalar field (quintessence) is nonminimally coupled to gravitation. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT