84 resultados para Cr3 diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flucloxacillin sodium (FLU) is a semi-synthetic penicillin active against many gram-positive bacteria such as streptococci and penicilinase-producing staphylococci, including methicillin-susceptible S. aureus. This study describes the development and validation of a microbiological assay, applying the diffusion agar method for the determination of FLU, as well as the evaluation of the ability of the method in determining the stability of FLU in capsules against acidic and basic hydrolysis, photolytic and oxidative degradations, using S. aureus ATCC 25923 as micro-organism test and 3 x 3 parallel line assay design (three doses of the standard and three doses of the sample in each plate), with six plates for each assay, according to the Brazilian Pharmacopoeia. The validation method showed good results including linearity, precision, accuracy, robustness and selectivity. The assay is based on the inhibitory effect of FLU using Staphylococcus aureus ATCC 25923. The results of the assay were treated by analysis of variance (ANOVA) and were found to be linear (r = 0.9997) in the range from 1.5 to 6.0 μg/mL, precise (repeatability: R.S.D. = 1.63 and intermediate precision: R.S.D. = 1.64) and accurate (98.96%). FLU solution (from the capsules) exposed to direct UVC light (254 nm), alkaline and acid hydrolysis and hydrogen peroxide causing oxidation were used to evaluate the specificity of the bioassay. Comparison of bioassay and liquid chromatography by ANOVA showed no difference between methodologies. The results demonstrated the validity of the proposed bioassay, which is a simple and useful alternative methodology for FLU determination in routine quality control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction among heavy interstitial atoms present in metals with bcc structure is studied using anelastic spectroscopy. This technique makes it possible to obtain information on interstitial concentration, precipitation, solubility limit, and diffusion. The diffusion coefficients of nitrogen in niobium were obtained using the relaxation parameters obtained from anelastic spectroscopy measurements for different oscillation frequencies of the system. The results showed the interstitial diffusion of nitrogen present in solid solution in niobium when submitted to different charges of nitrogen at a temperature of 1373 K and a partial pressure in the order of 10-4 Torr. The exponential variation of the pressure experimentally in function of the time was thus obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of their low elasticity modulus, titanium alloys have excellent biocompatibility, and are largely used in orthopedic prostheses. Among the properties that are beneficial for use in orthopedic implants is the elasticity modulus, which is closely connected to the crystal structure of the material. Interstitial elements, such as oxygen, change the mechanical properties of the material. Anelastic spectroscopy measurements are a powerful tool for the study of the interaction of these elements with the metallic matrix and substitutional solutes, providing information on the diffusion and concentration of interstitial elements. In this study, the effect of oxygen on the anelastic properties of alloys in the Ti-15Mo-Zr system was analyzed using anelastic spectroscopy measurements. The diffusion coefficients, pre-exponential factors, and activation energies of these alloys were calculated for oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)