200 resultados para Computer simulation languages
Resumo:
In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.
Resumo:
The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.
Resumo:
Experiments with fast folding proteins are beginning to address the relationship between collapse and folding. We investigate how different scenarios for folding can arise depending on whether the folding and collapse transitions are concurrent or whether a nonspecific collapse precedes folding. Many earlier studies have focused on the limit in which collapse is fast compared to the folding time; in this work we focus on the opposite limit where, at the folding temperature, collapse and folding occur simultaneously. Real proteins exist in both of these limits. The folding mechanism varies substantially in these two regimes. In the regime of concurrent folding and collapse, nonspecific collapse now occurs at a temperature below the folding temperature (but slightly above the glass transition temperature).
Resumo:
Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.
Resumo:
The advent of molecular markers has created opportunities for a better understanding of quantitative inheritance and for developing novel strategies for genetic improvement of agricultural species, using information on quantitative trait loci (QTL). A QTL analysis relies on accurate genetic marker maps. At present, most statistical methods used for map construction ignore the fact that molecular data may be read with error. Often, however, there is ambiguity about some marker genotypes. A Bayesian MCMC approach for inferences about a genetic marker map when random miscoding of genotypes occurs is presented, and simulated and real data sets are analyzed. The results suggest that unless there is strong reason to believe that genotypes are ascertained without error, the proposed approach provides more reliable inference on the genetic map.
Resumo:
The first experimental evidence for one of the six predicted baryon states which contain two valence charmed quarks-the doubly charmed baryons. As such, there were many predictions of the masses and other properties of these states. The properties of doubly charmed baryons provide a new window into the structure of baryonic matter.
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
A CMOS low-voltage, wide-band continuous-time current amplifier is presented. Based on an open-loop topology, the circuit is composed by transresistance and transconductance stages built around triode-operating transistors. In addition to an extended dynamic range, the amplifier gain can be programmed within good accuracy by the rapport between the aspect-ratio of such transistors and tuning biases Vxand Vy. A balanced current-amplifier according to a single I. IV-supply and a 0.35μm fabrication process is designed. Simulated results from PSPiCE and Bsm3v3 models indicate a programmable gain within the range 20-34dB and a minimum break-frequency of IMHz @CL=IpF. For a 200 μApp-level, THD is 0.8% and 0.9% at IKHz and 100KHz, respectively. Input noise is 405pA√Hz @20dB-gain, which gives a SNR of 66dB @1MHz-bandwidth. Maximum quiescent power consumption is 56μ W. © 2002 IEEE.
Resumo:
This paper presents a new pre-regulator boost operating in the boundary area between the continuous and discontinuous conduction modes of the boost inductor current, where the switches and boost diode performing zero-current commutations during its turn-off, eliminating the disadvantages related to the reverse recovery losses and electromagnetic interference problems of the boost diode when operating in the continuous conduction mode. Additionally, the interleaving technique is applied in the power cell, providing a significant input current ripple reduction. It should be noticed that the main objective of this paper is to present a complete modeling for the converter operating in the critical conduction mode, allowing an improved design procedure for interleaved techniques with high input power factor, a complete dynamic analysis of the structure, and the possibility of implementing digital control techniques in closed loop.
Resumo:
The criteria for the occurrence of roll wave phenomenon in the supercritical and turbulent Newtonian and non-Newtonian flows from the engineering point of view was analyzed. Imposing a constant discharge at the upstream of the canal and superposing a small perturbation, it was observed that roll waves can be developed more easily for small wave numbers and for high cohesions. Moreover, from the mathematical model used, it was demonstrated that the numerical viscosity was 10 times the physical viscosity.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.
Resumo:
Through the analyses of the Miyazawa-Jernigan matrix it has been shown that the hydrophobic effect generates the dominant driving force for protein folding. By using both lattice and off-lattice models, it is shown that hydrophobic-type potentials are indeed efficient in inducing the chain through nativelike configurations, but they fail to provide sufficient stability so as to keep the chain in the native state. However, through comparative Monte Carlo simulations, it is shown that hydrophobic potentials and steric constraints are two basic ingredients for the folding process. Specifically, it is shown that suitable pairwise steric constraints introduce strong changes on the configurational activity, whose main consequence is a huge increase in the overall stability condition of the native state; detailed analysis of the effects of steric constraints on the heat capacity and configurational activity are provided. The present results support the view that the folding problem of globular proteins can be approached as a process in which the mechanism to reach the native conformation and the requirements for the globule stability are uncoupled.