163 resultados para Biomaterial. Poly (lactic acid). Synthesis. Polycondensation. Drug delivery systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomateriais poliméricos são desenvolvidos para uso como substitutos de tecidos danificados e/ou estimular sua regeneração. Uma classe de biomateriais poliméricos são os biorreabsorvíveis, compostos que se decompõem tanto in vitro quanto in vivo. São empregados em tecidos que necessitam de um suporte temporário para sua recomposição tecidual. Dentre os vários polímeros biorreabsorvíveis, destacam-se os alfa-hidróxi ácidos, entre eles, diferentes composições do poli(ácido lático) (PLA), como o poli(L-ácido lático) (PLLA), poli(D-ácido lático) (PDLA), poli(DL-ácido lático) (PDLLA), além do poli(ácido glicólico) (PGA) e da policaprolactona (PCL). Estes polímeros são considerados biorreabsorvíveis por apresentarem boa biocompatibilidade e os produtos de sua decomposição serem eliminados do corpo por vias metabólicas. Diversas linhas de pesquisa mostram que os diferentes substratos à base de PLA estudados não apresentam toxicidade, uma vez que as células são capazes de crescer e proliferar sobre eles. Além disso, diversos tipos de células cultivadas sobre diferentes formas de PLA são capazes de se diferenciarem sobre os diferentes polímeros e passar a produzir componentes de matriz extracelular. Neste trabalho, é revisada a utilização de substratos à base de alfa-hidróxi ácidos, com destaque para diferentes formas de PLA, utilizados como substratos para cultura de células, bem como suas aplicações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results. (c) 2007 Elsevicr Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biomagnetic technique called Alternate Current Biosusceptometry (ACB) is a proposal to evaluate a multiparticulate drug delivery system in the human gastrointestinal tract. Results show that ACB was able to quantify the gastrointestinal transit and spreading of the magnetic material and is an attractive tool for pharmaceutical research. © 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop a mucoadhesive stimuli-sensitive drug delivery system for nasal administration of zidovudine (AZT). The system was prepared by formulating a low viscosity precursor of a liquid crystal phase, taking advantage of its lyotropic phase behavior. Flow rheology measurements showed that the formulation composed of PPG-5-CETETH-20, oleic acid and water (55, 30, 15% w/w), denominated P, has Newtonian flow behavior. Polarized light microscopy (PLM) revealed that formulation P is isotropic, whereas its 1:1 (w/w) dilution with artificial nasal mucus (ANM) changed the system to an anisotropic lamellar phase (PD). Oscillatory frequency sweep analysis showed that PD has a high storage modulus (G′) at nasal temperatures. Measurement of the mucoadhesive force against excised porcine nasal mucosa or a mucin disk proved that the transition to the lamellar phase tripled the work of mucoadhesion. Ex vivo permeation studies across porcine nasal mucosa exhibited an 18-fold rise in the permeability of AZT from the formulation. The Weibull mathematical model suggested that the AZT is released by Fickian diffusion mechanisms. Hence, the physicochemical characterization, combined with ex vivo studies, revealed that the PPG-5-CETETH-20, oleic acid, and water formulation could form a mucoadhesive matrix in contact with nasal mucus that promoted nasal absorption of the AZT. For an in vivo assessment, the plasma concentrations of AZT in rats were determined by HPLC method following intravenous and intranasal administration of AZT-loaded P formulation (PA) and AZT solution, respectively, at a dose of 8 mg/kg. The intranasal administration of PA resulted in a fast absorption process (Tmax = 6.7 min). Therefore, a liquid crystal precursor formulation administered by the nasal route might represent a promising novel tool for the systemic delivery of AZT and other antiretroviral drugs. In the present study, the uptake of AZT absorption in the nasal mucosa was demonstrated, providing new foundations for clinical trials in patients with AIDS. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by melt intercalation. The influence from the organoclays on the biodegradation of PLA was evaluated based on the respirometry method. The incorporation of clay Cloisite 20A did not change the mineralization curve of PLA. The nanocomposite with Cloisite 30B, on the other hand, presented a different behavior, indicating a delay in the polymer biodegradation. The materials were characterized by X-ray Diffraction, Thermogravimetric Analysis and Differential Scanning Calorimetry. The materials characterization indicated nanocomposites with an intercalated structure as well as reduced thermal stability and a slight increase in the degree of crystallinity compared to the pure polymer.