93 resultados para two-dimensional systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8 M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT (dithiothreitol) and 0.2% carrier ampholytes; (b) 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), 40 mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter × 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm2during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, harvesting process of sugarcane is changing itself, passing through semi-mechanized for mechanized system, who, currently predominate in Sao Paulo state, Brazil. Mechanized harvesting consists in a sequence of operations which includes cutting the pointer and chopping the stalk. The straw is a harvesting residue, and it stays in the ground, piling up above soil, with a possible prejudice for crop yield. An economic way to retract this straw is using mechanized processing for bailing it, involving hay balers, which are imported to Brazil and their use require regularly field conditions of work. Those balers could produce square or round bales, which can be sold to energy generation. This study aims to estimate economic efficiency indicators of round and square systems for sugarcane straw, establishing a relationship between baling costs and the incoming generated from those bales. Based on data set, round baling system was 26% more efficient than square baling system, and that round baler has a lower purchase price and a higher compress ratio of biomass, allowing a greater potential for power generation, turning it a more advantageous in a possible marketing for bales produced. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic charge-transfer salt EtMe3P[Pd(dmit)(2)](2) is a quasi-two-dimensional Mott insulator with localized spins S = 1/2 residing on a distorted triangular lattice. Here we report measurements of the uniaxial thermal expansion coefficients alpha(i) along the in-plane i = a and c axis as well as along the out-of-plane b axis for temperatures 1.4 K <= T <= 200 K. Particular attention is paid to the lattice effects around the phase transition at T-VBS = 25 K into a low-temperature valence-bond-solid phase and the paramagnetic regime above where effects of short-range antiferromagnetic correlations can be expected. The salient results of our study include (i) the observation of strongly anisotropic lattice distortions accompanying the formation of the valence-bond-solid phase, and (ii) a distinct anomaly in the thermal expansion coefficients in the paramagnetic regime around 40 K. Our results demonstrate that upon cooling through T-VBS the in-plane c axis, along which the valence bonds form, contracts while the second in-plane a axis elongates by the same relative amount. Surprisingly, the dominant effect is observed for the out-of-plane b axis which shrinks significantly upon cooling through T-VBS. The pronounced anomaly in alpha(i) around 40 K is attributed to short-range magnetic correlations. It is argued that the position of this maximum, relative to that in the magnetic susceptibility around 70 K, speaks in favor of a more anisotropic triangular-lattice scenario for this compound than previously thought.