62 resultados para thin film structure
Resumo:
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The CCTO thin film present a cubic structure with lattice parameter a = 7.379 ±0.001 Å free of secondary phases. The observed electrical features of CCTO thin films are highly dependent on the [CaO12], [CaO 4], [CuO11], [CuO11Vx 0] and [TiO5.VO] clusters. The CCTO film capacitor showed a dielectric loss of 0.40 and a dielectric permittivity of 70 at 1 kHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Eumelanin pigments show hydration-dependent conductivity, broad-band UV-vis absorption, and chelation of metal ions. Solution-processing of synthetic eumelanins opens new possibilities for the characterization of eumelanin in thin film form and its integration into bioelectronic devices. We investigate the effect of different synthesis routes and processing solvents on the growth, the morphology, and the chemical composition of eumelanin thin films using atomic force microscopy and X-ray photoelectron spectroscopy. We further characterize the films by transient electrical current measurements obtained at 50% to 90% relative humidity, relevant for bioelectronic applications. We show that the use of dimethyl sulfoxide is preferable over ammonia solution as processing solvent, yielding homogeneous films with surface roughnesses below 0.5 nm and a chemical composition in agreement with the eumelanin molecular structure. These eumelanin films grow in a quasi layer-by-layer mode, each layer being composed of nanoaggregates, 1-2 nm high, 10-30 nm large. The transient electrical measurements using a planar two-electrode device suggest that there are two contributions to the current, electronic and ionic, the latter being increasingly dominant at higher hydration, and point to the importance of time-dependent electrical characterization of eumelanin films. This journal is © 2013 The Royal Society of Chemistry.