122 resultados para power law
Resumo:
Power law scaling is observed in many physical, biological and socio-economical complex systems and is now considered an important property of these systems. In general, power law exists in the central part of the distribution. It has deviations from power law for very small and very large variable sizes. Tsallis, through non-extensive thermodynamics, explained power law distribution in many cases including deviation from the power law. In case of very large steps, the used the heuristic crossover approach. In the present we present an alternative model in which we consider that the entropy factor 9 decreases with variable size due to the softening of long range interactions or memory. We apply this model for distribution of citation index of scientists and examination scores and are able to explain the distribution for entire variable range. In the present model, we can have very sharp cut-off without interfering with power law in its central part as observed in many cases. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.
Resumo:
The temperature and velocity distributions of the air inside the cabinet of domestic refrigerators affect the quality of food products. If the consumer knows the location of warm and cold zones in the refrigerator, the products can be placed in the right zone. In addition, the knowledge of the thickness of thermal and hydrodynamic boundary layers near the evaporator and the other walls is also important. If the product is too close to the evaporator wall, freezing can occur, and if it is too close to warm walls, the products can be deteriorated. The aim of the present work is to develop a steady state computational fluid dynamics (CFD) model for domestic refrigerators working on natural convection regime. The Finite Volume Methodology is chosen as numerical procedure for discretizing the governing equations. The SIMPLE-Semi-Implicit Method for Pressure-Linked Equations algorithm applied to a staggered mesh was used for solving the pressure-velocity coupling problem. The Power-Law scheme is employed as interpolation function for the convective-diffusive terms, and the TDMA-Tri-Diagonal Matrix Algorithm is used to solve the systems of algebraic equations. The model is applied to a commercial static refrigerator, where the cabinet is considered an empty three-dimensional rectangular cavity with one drawer at the bottom of the cabinet, but without shelves. In order to analyze the velocity and temperature fields of the air flow inside the cabinet the evaporator temperature, Te, was varied from -20 degrees C to 0 degrees C, and nine different evaporator positions are evaluated for evaporator temperature of -15 degrees C. The cooling capacity of the evaporator for the steady state regime is also computed for each case. One can conclude that the vertical positioning of the evaporator inside the cabinet plays an important role on the temperature distribution inside the cabinet.
Resumo:
Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent alpha = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 +/- 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system. Citation: Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. Zeng, C. F. M. Raupp, D. M. Marra, G. H. P. M. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi (2010), Widespread Amazon forest tree mortality from a single cross-basin squall line event, Geophys. Res. Lett., 37, L16701, doi:10.1029/2010GL043733.
Resumo:
Fluorindate glasses containing 1,2,3,4 ErF3 mol % were prepared in a dry box under argon atmosphere. Absorption, Stokes luminescence (under visible and infrared excitation), the dependence of 4S3/2, 4I11/2, and 4I13/2 lifetimes with Er concentration, and upconversion under Ti-saphire laser excitation at λ=790 nm were measured, mostly at T=77 and 300 K. The upconversion results in a strong green emission and weaker blue and red emissions whose intensity obeys a power-law behavior I∼Pn, where P is the infrared excitation power and n=1.6, 2.1, and 2.9 for the red, green, and blue emissions, respectively. The red emission exponent n=1.5 can be explained by a cross relaxation process. The green and blue emissions are due to excited state absorption (ESA) and energy transfer (ET) processes that predict a factor n=2 and n=3 for the green and blue emissions, respectively. From transient measurements we concluded that for lightly doped samples the green upconverted emission is originated due to both processes ESA and ET. However, for heavily doped samples ET is the dominant process.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
Power-law distributions, i.e. Levy flights have been observed in various economical, biological, and physical systems in high-frequency regime. These distributions can be successfully explained via gradually truncated Levy flight (GTLF). In general, these systems converge to a Gaussian distribution in the low-frequency regime. In the present work, we develop a model for the physical basis for the cut-off length in GTLF and its variation with respect to the time interval between successive observations. We observe that GTLF automatically approach a Gaussian distribution in the low-frequency regime. We applied the present method to analyze time series in some physical and financial systems. The agreement between the experimental results and theoretical curves is excellent. The present method can be applied to analyze time series in a variety of fields, which in turn provide a basis for the development of further microscopic models for the system. © 2000 Elsevier Science B.V. All rights reserved.
Evolution of the viscoelastic properties of SnO2 colloidal suspensions during the sol-gel transition
Resumo:
This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.
Resumo:
Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.
Resumo:
Thermal conductivity, thermal diffusivity, and density of yellow mombin juice were determined at 8.8-49.4 °Brix and at temperature from 0.4 to 77.1 °C. Apparent viscosity was also measured between 7.8 and 30 °Brix and at temperature from 0 to 60 °C. Yellow mombin juice was produced from fruits of two different batches and the concentration process was performed using a roto evaporator or a rising film evaporator, single effect, with recirculation, under vacuum, to obtain concentrated juice. In order to obtain different concentrations, concentrated juice was diluted with distilled water. Multiple regression analysis was performed to fit thermal conductivity, thermal diffusivity and density experimental data obtaining a good fit. Arrhenius and power law relationships were proposed to fit apparent viscosity as a function of temperature and juice concentration at typical shear rates found during processing. The rheological parameters together with experimental values of pressure loss in tube flow were used to calculate friction factors, which were compared to those resulting from theoretical equation.
Resumo:
We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q 2 is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribution function exhibits the power law xg(x, Q 2) = h(Q 2)x( -∈). Assuming that the Q 2 scale is proportional to the dynamical gluon mass one, we show that the values of h(Q 2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales. © 2008 World Scientific Publishing Company.
Resumo:
This research studied the effects of the independent variables whey protein concentrate - WPC (3.0; 3.5; 4.0%), skimmed milk powder - SMP (4.0; 5.0; 6.0%), and isolated soy protein - IPS (1.5; 2.0; 2.5%) on the rheological and sensorial characteristics of functional dairy beverages. In all tests 7% of sucrose was added to the ingredients. The rheological parameters were obtained in duplicate at the temperature of 10° C using a cone and plate rheometer, and fitted to the Power law model. The samples revealed a non-Newtonian fluid behavior both in the upward and downward curves, typical of a tixotropic fluid. The dairy beverages were submitted to a sensory analysis by a group of fifty untrained tasters who used a hedonic scale of nine points, the extremes being 1 - disliked extremely and 9 - liked extremely, in order to evaluate the following parameters: general acceptability; appearance and color; consistency; taste and aroma. The dairy beverage produced with 3% WPC, 6% SMP and 1.5% IPS, (treatment 3), was the one that obtained the best average score for those attributes and was preferred by the tasters. The variables SMP and IPS and the interaction between WPC and SMP presented a positive effect on the sensory consistency attributes: the higher amount of those ingredients in the formula the more the tasters liked the consistency.