135 resultados para post-processing method
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Jet impingement erosion test rig has been used to erode titanium alloy specimens (Ti-4Al-4V). Eroded surface profiles have been obtained by vertical sectioning method for light microscopy observation. Mixed fractals have been measured from profile images by a digital image processing and analysis technique. The use of this technique allows glimpsing a quantitative correlation among material properties, fractal surface topography and erosion phenomena. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
This work is an example of the improvement on quantitative fractography by means of digital image processing and light microscopy. Two techniques are presented to investigate the quantitative fracture behavior of Ti-4Al-4V heat-treated alloy specimens, under Charpy impact testing. The first technique is the Minkowski method for fractal dimension measurement from surface profiles, revealing the multifractal character of Ti-4Al-4V fracture. It was not observed a clear positive correlation of fractal values against Charpy energies for Ti-4Al-4V alloy specimens, due to their ductility, microstructural heterogeneities and the dynamic loading characteristics at region near the V-notch. The second technique provides an entire elevation map of fracture surface by extracting in-focus regions for each picture from a stack of images acquired at successive focus positions, then computing the surface roughness. Extended-focus reconstruction has been used to explain the behavior along fracture surface. Since these techniques are based on light microscopy, their inherent low cost is very interesting for failure investigations.
Resumo:
PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The purpose of this study was to compare the artificial tooth positional changes following the flasking and polymerization of complete dentures by a combination of two flasking methods and two polymerization techniques using computer graphic measurements.Materials and Methods: Four groups of waxed complete dentures (n = 10) were invested and polymerized using the following techniques: (1) adding a second investment layer of gypsum and conventional water bath polymerization (Control), (2) adding a second investment layer of gypsum and polymerization with microwave energy (Gyp-micro), (3) adding a second investment layer of silicone (Zetalabor) and conventional polymerization (Silwater), and (4) adding a second investment layer of silicone and polymerization with microwave energy (Silmicro). For each specimen, six segments of interdental distances (A to F) were measured to determine the artificial tooth positions in the waxed and polymerized stages using software program AutoCad R14. The mean values of the changes were statistically compared by univariate ANOVA with Tukey post-hoc test at 5% significance.Results: There were no significant differences among the four groups, except for segment D of the Silmicro group (-0.004 +/- 0.032 cm) in relation to the Gypwater group (0.044 +/- 0.031 cm) (p < 0.05), which presented, repectively, expansion and shrinkage after polymerization.Conclusions: Within the limitations of this study, it was concluded that although the differences were not statistically significant, the use of a silicone investment layer when flasking complete dentures resulted in the least positional changes of the artificial teeth regardless of the polymerization technique.
Resumo:
Objective: The purpose of this study was to compare the dental movement that occurs during the processing of maxillary complete dentures with 3 different base thicknesses, using 2 investment methods, and microwave polymerization.Methods: A sample of 42 denture models was randomly divided into 6 groups (n = 7), with base thicknesses of 1.25, 2.50, and 3.75 mm and gypsum or silicone flask investment. Points were demarcated on the distal surface of the second molars and on the back of the gypsum cast at the alveolar ridge level to allow linear and angular measurement using AutoCAD software. The data were subjected to analysis of variance with double factor, Tukey test and Fisher (post hoc).Results: Angular analysis of the varying methods and their interactions generated a statistical difference (P = 0.023) when the magnitudes of molar inclination were compared. Tooth movement was greater for thin-based prostheses, 1.25 mm (-0.234), versus thick 3.75 mm (0.2395), with antagonistic behavior. Prosthesis investment with silicone (0.053) showed greater vertical change compared with the gypsum investment (0.032). There was a difference between the point of analysis, demonstrating that the changes were not symmetric.Conclusions: All groups evaluated showed change in the position of artificial teeth after processing. The complete denture with a thin base (1.25 mm) and silicone investment showed the worst results, whereas intermediate thickness (2.50 mm) was demonstrated to be ideal for the denture base.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nickel nanoparticles into silica-carbon matrix composites were prepared by using the polymeric precursor method. The effects of the polyester type and the time of pyrolysis on the mesoporosity and nickel particle dispersion into non-aqueous amorphous silica-carbon matrix were investigated by thermogravimetric analysis, adsorption/desorption isotherms and TEM. A well-dispersed metallic phase could be only obtained by using ethylene glycol. Weightier polyesters affected the pyrolysis process due to a combination of more amounts of carbonaceous residues and delaying of pyrolysis process. The post-pyrolyzed composites were successfully cleaned at 200 degrees C for I h in oxygen atmosphere leading to an increase in the surface area and without the occurrence of carbon combustion or nickel nanoparticles oxidation. The matrix composites presented predominantly mesoporous with pore size well defined in 38 angstrom, mainly when tetraethylene glycol was used as polymerizing agent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have examined the applicability of the 'nested' collision induced dissociation/post-source decay (CID/PSD) method to the sequencing of novel peptides from solitary wasps which have neurotoxic venom for paralyzing other insects. The CID/PSD spectrum of a ladder peptide derived from an exopeptidase digest was compared with that of the intact peptide. The mass peaks observed only in the CID/PSD spectrum of a ladder peptide were extracted as C-terminal fragment ions. Assignment of C-terminal fragment ions enabled calculation of N-terminal fragment masses, leading to differentiation between N-terminal fragment ions and internal fragment ions. This methodology allowed rapid and sensitive identification by removing ambiguity in the assignment of the fragment ions, and proved useful for sequencing unknown peptides, in particular those available as natural products with a limited supply. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Peanuts are likely to be infested by fungi with consequent contamination by aflatoxin in post-harvest industries. A hazard analysis critical control point (HACCP) plan is proposed for a typical Brazilian post-harvest industry from raw in-shell reception to the unpeeled peanuts transportation. Codex Alimentarius Commission guidelines were followed, with four critical control points (CCP) for aflatoxin being identified. The process steps with highest probability of aflatoxin occurrence (risk) are the in-shell reception, the dried in-shell storage, and the unpeeled kernel storage. During the storage steps there is a lack of control of air moisture and temperature. Therefore, there is no option but to keep rigid monitoring and control over each CCP, and detour lots with high aflatoxin levels to either oil or seed production. Attempts to correlate the aflatoxin levels with the rainfall showed an irregular trend of the toxin level. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).