114 resultados para physics computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce a mapping between the so-called deformed hyperbolic potentials, which are presenting a continuous interest in the last few years, and the corresponding nondeformed ones. As a consequence, we conclude that these deformed potentials do not pertain to a new class of exactly solvable potentials, but to the same one of the corresponding nondeformed ones. Notwithstanding, we can reinterpret this type of deformation as a kind of symmetry of the nondeformed potentials. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of a cosmological constant, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincaré and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of the phase shift φ between the transmited and difracted beams interfering along the same direction behind the hologram recorded in a photorefractive crystal is directly and accurately measured using a self-stabilized recording technique. The measured phase shift as a function of the applied electric field allows computing the Debye screening lenght and the effectively applied field coefficient of an undoped Bi 12TiO 20 crystal. The result is in good agreement with the already available information about this sample. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nilpotency of the pure spinor BRST operator in a curved background implies superspace equations of motion for the background. By computing one-loop corrections to nilpotency for the heterotic sigma model, the Yang-Mills Chern-Simons corrections to the background are derived. © 2008 SISSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for new physics is performed using isolated same-sign dileptons with at least two b-quark jets in the final state. Results are based on a 4.98 fb -1 sample of protonproton collisions at a centre-of-mass energy of 7TeV collected by the CMS detector. No excess above the standard model background is observed. Upper limits at 95% confidence level are set on the number of events from non-standard-model sources. These limits are used to set constraints on a number of new physics models. Information on acceptance and efficiencies are also provided so that the results can be used to confront additional models in an approximate way. © 2012 SISSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy s=7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 fb-1. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this Letter. © 2012 CERN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Letter describes the search for an enhanced production rate of events with a charged lepton and a neutrino in high-energy pp collisions at the LHC. The analysis uses data collected with the CMS detector, with an integrated luminosity of 5.0 fb-1 at √s=7 TeV, and a further 3.7 fb -1 at √s=8 TeV. No evidence is found for an excess. The results are interpreted in terms of limits on a heavy charged gauge boson (W ′) in the sequential standard model, a split universal extra dimension model, and contact interactions in the helicity-nonconserving model. For the last, values of the binding energy below 10.5 (8.8) TeV in the electron (muon) channel are excluded at a 95% confidence level. Interpreting the ℓν final state in terms of a heavy W′ with standard model couplings, masses below 2.90 TeV are excluded. © 2013 CERN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The daily-to-day of medical practice is marked by a constant search for an accurate diagnosis and therapeutic assessment. For this purpose the doctor serves up a wide variety of imaging techniques, however, the methods using ionizing radiation still the most widely used because it is considered cheaper and above all very efficient when used with control and quality. The optimization of the risk-benefit ratio is considered a major breakthrough in relation to conventional radiology, though this is not the reality of computing and digital radiology, where Brazil has not established standards and protocols for this purpose. This work aims to optimize computational chest radiographs (anterior-posterior projection-AP). To achieve this objective were used a homogeneous phantoms that simulate the characteristics of absorption and scattering of radiation close to the chest of a patient standard. Another factor studied was the subjective evaluation of image quality, carried out by visual grading assessment (VGA) by specialists in radiology, using an anthropomorphic phantom to identify the best image for a particular pathology (fracture or pneumonia). Quantifying the corresponding images indicated by the radiologist was performed from the quantification of physical parameters (Detective Quantum Efficiency - DQE, Modulation Transfer Function - MTF and Noise Power Spectrum - NPS) using the software MatLab®. © 2013 Springer-Verlag.