98 resultados para multiple drug resistance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quinolones constitute a family of compounds with a potent antibiotic activity. The enzyme DNA gyrase, responsible for the replication and transcription processes in DNA of bacteria, is involved in the mechanism of action of these drugs. In this sense, it is believed that quinolones stabilize the so-called 'cleavable complex' formed by DNA and gyrase, but the whole process is still far from being understood at the molecular level. This information is crucial in order to design new biological active products. As an approach to the problem, we have designed and synthesized low molecular weight peptide mimics of DNA gyrase. These peptides correspond to sequences of the subunit A of the enzyme from Escherichia coli, that include the quinolone resistance-determining region (positions 75-92) and a segment containing the catalytic Tyr-122 (positions 116-130). The peptide mimic of the non-mutated enzyme binds to ciprofloxin (CFX) only when DNA and Mg2+ were present (Kd = 1.6 × 10 -6 m), a result previously found with DNA gyrase. On the other hand, binding was reduced when mutations of Ser-83 to Leu-83 and Asp-87 to Asn-87 were introduced, a double change previously found in the subunit A of DNA gyrase from several CFX-resistant clinical isolates of E. coli. These results suggest that synthetic peptides designed in a similar way to that described here can be used as mimics of gyrases (topoisomerases) in order to study the binding of the quinolone to the enzyme-DNA complex as well as the mechanism of action of these antibiotics. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During processing of cattle carcasses, contamination may occurs with the transfer of microbiota of animals feaces to carcasses. This contamination many times may be by Escherichia coli carriers of virulence factor as stx and eae genes being classified as Shiga like toxin. Shiga toxin-producing Escherichia coli (STEC) is recognized wordwide as human pathogen. A survey was performed to determine the sensibility profile to several antimicrobial drugs of STEC in carcasses obtained from an abattoir in Brazil between March 2008 and August at 2009. A total of 120 STEC were isolated. All isolates were confirmed as being E. coli by their biochemical analysis and submitted to polymerase chain reaction (PCR) for detection of stx, eae and ehly genes. No strains was isolated being carriers of ehly gene. The number of isolates carriers of eae gene were 48/120. The most frequent resistance was seen against cephalothin (84.0%), streptomycin (45.0%), nalidixic acid (42.0%) and tetracycline (20.0%). Multidrug resistance (MDR) to three or more antimicrobial agents was observed in 46 (38.3%) E. coli isolates. The findings of STEC and MRD show that cattle carcasses may be a reservoir of pathogenic bacterial for the consumer public. © 2011 Academic Journals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Findings. Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International- types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Conclusions: Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients. © 2011 Leite et al; licensee BioMed Central Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenotypic and genotypic SPM and IMP metallo-β-lactamases (MBL) detection and also the determination of minimal inhibitory concentrations (MIC) to imipenem, meropenem and ceftazidime were evaluated in 47 multidrug-resistant Pseudomonas aeruginosa isolates from clinical specimens. Polymerase chain reaction detected 14 positive samples to either blaSPM or blaIMP genes, while the best phenotypic assay (ceftazidime substrate and mercaptopropionic acid inhibitor) detected 13 of these samples. Imipenem, meropenem and ceftazidime MICs were higher for MBL positive compared to MBL negative isolates. We describe here the SPM and IMP MBL findings in clinical specimens of P. aeruginosa from the University Hospital of Botucatu Medical School, São Paulo, Brazil, that reinforce local studies showing the high spreading of blaSPM and blaIMP genes among Brazilian clinical isolates. © 2011 Elsevier Editora Ltda.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disseminated fusariosis has emerged as a significant, usually fatal infection in immunocompromised hosts despite antifungal treatment. We describe here two patients with acute leukemia who developed disseminated amphotericin-resistant fusariosis, and review of six studies of cases series in the literature. Two Fusarium solani strains were isolated from blood and skin cultures of one patient, and one strain from the blood culture of the second patient. Both patients died despite antifungal treatment. Strains were identified by sequencing of ITS1 and ITS4 regions. Random amplified polymorphic DNA analysis of the three F. solani isolates showed a low degree of similarity. Screening for Fusarium spp. contaminants within our facility was negative. Using the CLSI M-38-A2 broth dilution method and E tests®, we found that the MICs were low for voriconazole (0. 12 and 0. 5 mg/L, respectively), unexpectedly high for amphotericin B (≥8 and ≥32 μg/mL, respectively) and itraconazole (≥16 mg/ml). Patients with leukemia or persistent neutropenia should be assessed for disseminated fungal infections, including biopsy and skin cultures. Antifungal susceptibility tests are important due to the possibility of the strains being amphotericin resistant. Treatments must be aggressive, with high doses of antifungals or combined therapy. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis. Materials and methods: Suspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures. Results: Different PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation. Conclusion: Photoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The recovery of mutans streptococci in saliva and dental biofilm samples depends, in part, on the culture medium used. In this study, we compared (i) the culture media Sucrose-Bacitracin agar (SB-20), Modified SB-20 (SB-20M) and Mitis Salivarius Bacitracin agar (MSB) in the count of colony forming units (cfu) of mutans streptococci and (ii) in the morphological and biochemical differentiation between Streptococcus mutans and Streptococcus sobrinus. Design: Samples of non-stimulated saliva from 20 children were plated on SB-20, SB-20M and MSB, and incubated in microaerophilia at 37 °C for 72 h. Identification of microorganisms was based on analysis of colony morphology under stereomicroscopy. The biochemical identification of colonies was done by biochemical tests using sugar fermentation, resistance to bacitracin and hydrogen peroxide production. Results: There was no significant difference (p > 0.05) in the number of cfu of mutans streptococci recovered on SB-20 and SB-20M agar. Comparing the media, SB-20 and SB-20M yielded a larger number of mutans streptococci colonies (p < 0.05) and were more effective than MSB in the identification of S. sobrinus (p < 0.05), but not of S. mutans (p > 0.05). Conclusion: There was no significant difference between SB-20 and SB-20M culture media in the count of mutans streptococci, demonstrating that the replacement of sucrose by coarse granular cane sugar did not alter the efficacy of the medium. Compared with MSB, SB-20 and SB-20M allowed counting a larger number of mutans streptococci colonies and a more effective morphological identification of S. sobrinus. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR