69 resultados para metal ion homeostatis
Resumo:
Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.
Resumo:
The purpose of this paper is to characterize the lability/inertness metal fractions complexed by aquatic humic substances (HS) in relation to pH, complexation time, and HS concentration. HS were preconcentrated by ultrafiltration and complexed with bivalent metal ions. These fractions were characterized by ion exchange with the chelating collector cellulose Hyphan by applying batch procedure. The metals were determined by atomic absorption spectrometry. The results show that the distribution coefficients, Kd, decreased with HS presence, and that the relative lability of metal fractions complexed by HS is dependent on variables such as pH, complexation time, and HS concentration. Until c.a. 15 min, the metal change between aquatic HS and ion exchanger occurs following a 2 order reaction. Afterwards, the remaining metal fraction in the HS reacts following a 1st order reaction. For traces of metal ions bound to dissolved HS, the lability orderPb > Mn > Cd, Ni > Cu is revealed. ©1997 Soc. Bras. Química.
Resumo:
A perfect match: Silver deposition is one of the fastest electrochemical reactions, even though the Ag+ ion loses more than 5 eV solvation energy in the process. This phenomenon, an example of the enigma of metal deposition, was investigated by a combination of MD simulations, DFT, and specially developed theory. At the surface, the Ag+ ion experiences a strong interaction with the sp band of silver, which catalyzes the reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this study, it was demonstrated that β-galactosidase can be deactivated and reactivated with EDTA and divalent metal ions. The enzyme was deactivated after 20 minutes in EDTA solution. Maximal deactivation at the lowest EDTA concentration (10-3 mol.L-1) occurred in the presence of Tris-HCl buffer (pH 7.0). The enzyme recovered 50% of its initial activity after 10 minutes at Mg2+concentrations higher than 0.1 mmol.L-1. Experimental concentrations of 0.1 mmol.L-1 Mn2+ and 1.0 mmol.L-1 Co2+ were sufficient to reactivate the enzyme to around 300% of the control activity for the Mn2+ ion and nearly 100% for the Co2+ ion. The enzyme gradually lost its activity when the Co2+ concentration was 10-2 mol.L-1. Ni2+ and Zn2+ were unable to restore the catalytic activity. Km app and Vmax app were 1.95 ± 0.05 mmol.L-1 and 5.40 ± 0.86x10-2 mmol.min-1.mg-1, with o-NPG as substrate. Optimal temperature and pH were 34oC and 7.5. The half-life (t1/2) at 30°C was 17.5 min for the holoenzyme and 11.0 min for the apoenzyme. With respect to pH variation, the apoenzyme proved to be more sensitive than the holoenzyme. Keywords: β-galactosidase. Divalent metallic ions. Enzyme activity. Stability. RESUMO Efeito de íons metálicos divalentes na atividade e estabilidade da β-galactosidase isolada de Kluyveromyces lactis Este estudo demonstra como a β-galactosidase pode ser desativada e reativada usando EDTA e íons metálicos divalentes. A enzima foi desativada após 20 minutos na presença de EDTA. Desativação máxima para a menor concentração de EDTA (10-3 mol.L-1) ocorreu na presença do tampão Tris-HCl. A enzima recuperou 50% de sua atividade inicial após 10 minutos na presença de Mg2+ em concentrações superiores a 0,1mmol.L-1. Concentrações de 10-4 e 10-3mol.L-1 de Mn2+ e Co2+ foram suficientes para reativar a enzima em 300% comparado ao controle de íons Mn2+ e aproximadamente 100% para íons Co2+. A enzima perdeu gradualmente a sua atividade quando a concentração foi de 10-2 mol.L-1. Ni2+ e Zn2+ foram incapazes de restabelecer a atividade catalítica. Km app e Vmax app foram 1,95 ± 0,05 mmol.L-1 e 5,40 ± 0,86 x 10-2 mmol.min-1.mg-1. A temperatura e pH ótimos foram 34ºC e 7,5. A meia vida da holoenzima foi de 17,5 min a 30ºC e para a apoenzima foi de 11,0 min a 30ºC. Quanto à variação de pH, a apoenzima provou ser mais sensível que a holoenzima. Palavras-chave: β-galactosidase. Íons metálicos divalentes. Atividade enzimática. Estabilidade.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The deposition of Cu2+ and Zn2+ from aqueous solution has been investigated by a combination of classical molecular dynamics, density functional theory, and a theory developed by the authors. For both cases, the reaction proceeds through two one-electron steps. The monovalent ions can get close to the electrode surface without losing hydration energy, while the divalent ions, which have a stronger solvation sheath, cannot. The 4s orbital of Cu interacts strongly with the sp band and more weakly with the d band of the copper surface, while the Zn4s orbital couples only to the sp band of Zn. At the equilibrium potential for the overall reaction, the energy of the intermediate Cu+ ion is only a little higher than that of the divalent ion, so that the first electron transfer can occur in an outer-sphere mode. In contrast, the energy of the Zn+ ion lies too high for a simple outer-sphere reaction to be favorable; in accord with experimental data this suggests that this step is affected by anions.
Resumo:
MTA is composed of various metal oxides, calcium oxide and bismuth. It has good biological properties and is indicated in cases of endodontic complications. Several commercial formulations are available and further studies are necessary to evaluate these materials. Objective: To evaluate pH and calcium releasing of MTA Fillapex® compared with gray and white MTA. Material and methods: Gray and white MTA (Angelus) and MTA Fillapex® (Angelus) were manipulated and placed into polyethylene tubes and immersed in distilled water. The pH of these solutions was measured at 24 hours, 7 days and 14 days. Simultaneously, at these same aforementioned periods, these materials' calcium releasing was quantified, through atomic absorption spectrophotometry. The results were submitted to ANOVA, with level of significance at 5%. Results: Concerning to pH, the materials present similar behaviors among each other at 24 hours (p > 0.05). At 7 and 14 days, MTA Fillapex® provided significantly lower pH values than the other materials (p < 0.05). Regarding to calcium releasing, at 24 hours and 7 days, MTA Fillapex® provided lower releasing than the other materials (p < 0.05). After 14 days, differences were found between MTA Fillapex® and gray MTA (p < 0.05). Conclusion: All materials showed alkaline pH and calcium releasing, with significantly lower values for MTA Fillapex® sealer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis.